Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the correct system of linear equations representing the situation where Monica's school band raised money through car washes, let's analyze the problem step-by-step:
1. Define Variables:
- Let [tex]\( x \)[/tex] be the number of quick washes.
- Let [tex]\( y \)[/tex] be the number of premium washes.
2. Total Cars Washed:
- According to the problem, the total number of cars washed is 125. This gives us our first equation:
[tex]\[ x + y = 125 \][/tex]
3. Total Money Raised:
- The school band raised a total of [tex]$775 from the car washes. - The quick wash costs $[/tex]5.00, so the money raised from the quick washes is [tex]\( 5x \)[/tex].
- The premium wash costs $8.00, so the money raised from the premium washes is [tex]\( 8y \)[/tex].
- The total money raised from both types of washes is:
[tex]\[ 5x + 8y = 775 \][/tex]
4. Form the System of Equations:
- Combining the equations derived from the total number of cars washed and the total money raised, we have the system of linear equations:
[tex]\[ \begin{cases} x + y = 125 \\ 5x + 8y = 775 \end{cases} \][/tex]
5. Compare with Given Options:
- Compare our derived system with the given options:
1. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x + y = 125 \)[/tex]
2. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x + y = 775 \)[/tex]
3. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x - y = 125 \)[/tex]
4. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x - y = 775 \)[/tex]
- The system we derived matches the first option:
[tex]\[ \boxed{1}\; \text{(5x + 8y = 775 and x + y = 125)} \][/tex]
Hence, the correct system of linear equations representing the situation is:
[tex]\[ \boxed{1} \][/tex]
1. Define Variables:
- Let [tex]\( x \)[/tex] be the number of quick washes.
- Let [tex]\( y \)[/tex] be the number of premium washes.
2. Total Cars Washed:
- According to the problem, the total number of cars washed is 125. This gives us our first equation:
[tex]\[ x + y = 125 \][/tex]
3. Total Money Raised:
- The school band raised a total of [tex]$775 from the car washes. - The quick wash costs $[/tex]5.00, so the money raised from the quick washes is [tex]\( 5x \)[/tex].
- The premium wash costs $8.00, so the money raised from the premium washes is [tex]\( 8y \)[/tex].
- The total money raised from both types of washes is:
[tex]\[ 5x + 8y = 775 \][/tex]
4. Form the System of Equations:
- Combining the equations derived from the total number of cars washed and the total money raised, we have the system of linear equations:
[tex]\[ \begin{cases} x + y = 125 \\ 5x + 8y = 775 \end{cases} \][/tex]
5. Compare with Given Options:
- Compare our derived system with the given options:
1. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x + y = 125 \)[/tex]
2. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x + y = 775 \)[/tex]
3. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x - y = 125 \)[/tex]
4. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x - y = 775 \)[/tex]
- The system we derived matches the first option:
[tex]\[ \boxed{1}\; \text{(5x + 8y = 775 and x + y = 125)} \][/tex]
Hence, the correct system of linear equations representing the situation is:
[tex]\[ \boxed{1} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.