Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the correct system of linear equations representing the situation where Monica's school band raised money through car washes, let's analyze the problem step-by-step:
1. Define Variables:
- Let [tex]\( x \)[/tex] be the number of quick washes.
- Let [tex]\( y \)[/tex] be the number of premium washes.
2. Total Cars Washed:
- According to the problem, the total number of cars washed is 125. This gives us our first equation:
[tex]\[ x + y = 125 \][/tex]
3. Total Money Raised:
- The school band raised a total of [tex]$775 from the car washes. - The quick wash costs $[/tex]5.00, so the money raised from the quick washes is [tex]\( 5x \)[/tex].
- The premium wash costs $8.00, so the money raised from the premium washes is [tex]\( 8y \)[/tex].
- The total money raised from both types of washes is:
[tex]\[ 5x + 8y = 775 \][/tex]
4. Form the System of Equations:
- Combining the equations derived from the total number of cars washed and the total money raised, we have the system of linear equations:
[tex]\[ \begin{cases} x + y = 125 \\ 5x + 8y = 775 \end{cases} \][/tex]
5. Compare with Given Options:
- Compare our derived system with the given options:
1. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x + y = 125 \)[/tex]
2. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x + y = 775 \)[/tex]
3. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x - y = 125 \)[/tex]
4. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x - y = 775 \)[/tex]
- The system we derived matches the first option:
[tex]\[ \boxed{1}\; \text{(5x + 8y = 775 and x + y = 125)} \][/tex]
Hence, the correct system of linear equations representing the situation is:
[tex]\[ \boxed{1} \][/tex]
1. Define Variables:
- Let [tex]\( x \)[/tex] be the number of quick washes.
- Let [tex]\( y \)[/tex] be the number of premium washes.
2. Total Cars Washed:
- According to the problem, the total number of cars washed is 125. This gives us our first equation:
[tex]\[ x + y = 125 \][/tex]
3. Total Money Raised:
- The school band raised a total of [tex]$775 from the car washes. - The quick wash costs $[/tex]5.00, so the money raised from the quick washes is [tex]\( 5x \)[/tex].
- The premium wash costs $8.00, so the money raised from the premium washes is [tex]\( 8y \)[/tex].
- The total money raised from both types of washes is:
[tex]\[ 5x + 8y = 775 \][/tex]
4. Form the System of Equations:
- Combining the equations derived from the total number of cars washed and the total money raised, we have the system of linear equations:
[tex]\[ \begin{cases} x + y = 125 \\ 5x + 8y = 775 \end{cases} \][/tex]
5. Compare with Given Options:
- Compare our derived system with the given options:
1. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x + y = 125 \)[/tex]
2. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x + y = 775 \)[/tex]
3. [tex]\( 5x + 8y = 775 \)[/tex] and [tex]\( x - y = 125 \)[/tex]
4. [tex]\( 5x - 8y = 125 \)[/tex] and [tex]\( x - y = 775 \)[/tex]
- The system we derived matches the first option:
[tex]\[ \boxed{1}\; \text{(5x + 8y = 775 and x + y = 125)} \][/tex]
Hence, the correct system of linear equations representing the situation is:
[tex]\[ \boxed{1} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.