Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's work through the problem step by step.
The given system of linear equations is:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \quad \text{(Equation 1)} \\ 4x - 14y = -68 \quad \text{(Equation 2)} \end{array} \][/tex]
We want to replace one of these equations by the sum of that equation and a multiple of the other. We'll accomplish this by eliminating one variable through algebraic manipulation, thus ensuring that the new system has the same solutions as the original system.
### Step 1: Multiply Equation 2 to Facilitate Addition
First, we will multiply Equation 2 by 2 to align it for addition with Equation 1. This is done because multiplying by 2 will make the coefficients of [tex]\(x\)[/tex] in both equations the same, which simplifies the elimination process.
[tex]\[ 2 \cdot (4x - 14y) = 2 \cdot (-68) \][/tex]
This gives us:
[tex]\[ 8x - 28y = -136 \quad \text{(Modified Equation 2)} \][/tex]
### Step 2: Add Equation 1 and Modified Equation 2
Now we will add Equation 1 and Modified Equation 2 to eliminate [tex]\(x\)[/tex]:
[tex]\[ (8x + 7y) + (8x - 28y) = 39 + (-136) \][/tex]
Simplifying this:
[tex]\[ 8x + 8x + 7y - 28y = 39 - 136 \][/tex]
Combine like terms:
[tex]\[ 16x - 21y = -97 \quad \text{(New Equation)} \][/tex]
So the new system of equations is:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \quad \text{(Original Equation)} \\ 16x - 21y = -97 \quad \text{(New Equation)} \end{array} \][/tex]
### Step 3: Verify Solutions of Both Systems
The key here is to ensure both systems have the same solutions.
1. Original System:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \\ 4x - 14y = -68 \end{array} \][/tex]
Solving these equations, you find:
[tex]\[ x = \frac{1}{2}, \quad y = 5 \][/tex]
2. Modified System:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \\ 16x - 21y = -97 \end{array} \][/tex]
Solving these equations, you will find the same solutions:
[tex]\[ x = \frac{1}{2}, \quad y = 5 \][/tex]
### Conclusion:
Adding a multiple of one equation to another results in a new equation that still maintains the relationships and solutions of the original system. Hence, replacing one equation in the system with the sum of that equation and a multiple of the other does indeed produce a system with the same solutions.
Thus, we have confirmed that the new system:
[tex]\[\begin{array}{l} 8x + 7y = 39 \\ 16x - 21y = -97 \end{array}\][/tex]
has the same solution [tex]\((x, y) = \left(\frac{1}{2}, 5\right)\)[/tex] as the original system:
[tex]\[\begin{array}{l} 8x + 7y = 39 \\ 4x - 14y = -68 \end{array}\][/tex]
The given system of linear equations is:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \quad \text{(Equation 1)} \\ 4x - 14y = -68 \quad \text{(Equation 2)} \end{array} \][/tex]
We want to replace one of these equations by the sum of that equation and a multiple of the other. We'll accomplish this by eliminating one variable through algebraic manipulation, thus ensuring that the new system has the same solutions as the original system.
### Step 1: Multiply Equation 2 to Facilitate Addition
First, we will multiply Equation 2 by 2 to align it for addition with Equation 1. This is done because multiplying by 2 will make the coefficients of [tex]\(x\)[/tex] in both equations the same, which simplifies the elimination process.
[tex]\[ 2 \cdot (4x - 14y) = 2 \cdot (-68) \][/tex]
This gives us:
[tex]\[ 8x - 28y = -136 \quad \text{(Modified Equation 2)} \][/tex]
### Step 2: Add Equation 1 and Modified Equation 2
Now we will add Equation 1 and Modified Equation 2 to eliminate [tex]\(x\)[/tex]:
[tex]\[ (8x + 7y) + (8x - 28y) = 39 + (-136) \][/tex]
Simplifying this:
[tex]\[ 8x + 8x + 7y - 28y = 39 - 136 \][/tex]
Combine like terms:
[tex]\[ 16x - 21y = -97 \quad \text{(New Equation)} \][/tex]
So the new system of equations is:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \quad \text{(Original Equation)} \\ 16x - 21y = -97 \quad \text{(New Equation)} \end{array} \][/tex]
### Step 3: Verify Solutions of Both Systems
The key here is to ensure both systems have the same solutions.
1. Original System:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \\ 4x - 14y = -68 \end{array} \][/tex]
Solving these equations, you find:
[tex]\[ x = \frac{1}{2}, \quad y = 5 \][/tex]
2. Modified System:
[tex]\[ \begin{array}{l} 8x + 7y = 39 \\ 16x - 21y = -97 \end{array} \][/tex]
Solving these equations, you will find the same solutions:
[tex]\[ x = \frac{1}{2}, \quad y = 5 \][/tex]
### Conclusion:
Adding a multiple of one equation to another results in a new equation that still maintains the relationships and solutions of the original system. Hence, replacing one equation in the system with the sum of that equation and a multiple of the other does indeed produce a system with the same solutions.
Thus, we have confirmed that the new system:
[tex]\[\begin{array}{l} 8x + 7y = 39 \\ 16x - 21y = -97 \end{array}\][/tex]
has the same solution [tex]\((x, y) = \left(\frac{1}{2}, 5\right)\)[/tex] as the original system:
[tex]\[\begin{array}{l} 8x + 7y = 39 \\ 4x - 14y = -68 \end{array}\][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.