Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Simplify the expression:
[tex]\[
\frac{10m^5n^2 - 30mn}{5mn}
\][/tex]

Sagot :

Absolutely, let's simplify the given expression step-by-step:

We start with the expression:
[tex]\[ \frac{10 m^5 n^2 - 30 m n}{5 m n} \][/tex]

Step 1: Factor the numerator and the denominator separately.

The numerator is:
[tex]\[ 10 m^5 n^2 - 30 m n \][/tex]
We can factor out the greatest common factor (GCF). The GCF in the numerator is [tex]\(10 m n\)[/tex], so we have:
[tex]\[ 10 m^5 n^2 - 30 m n = 10 m n (m^4 n - 3) \][/tex]

The denominator is:
[tex]\[ 5 m n \][/tex]

Step 2: Write the expression with the factored form of the numerator.
[tex]\[ \frac{10 m n (m^4 n - 3)}{5 m n} \][/tex]

Step 3: Cancel out the common factor in the numerator and the denominator.
[tex]\(5 m n\)[/tex] is a common factor in both the numerator and the denominator:
[tex]\[ \frac{10 m n (m^4 n - 3)}{5 m n} = \frac{10}{5} \cdot \frac{m n}{m n} \cdot (m^4 n - 3) \][/tex]

Step 4: Simplify the fraction.
[tex]\[ \frac{10}{5} = 2 \][/tex]
[tex]\[ \frac{m n}{m n} = 1 \][/tex]

Thus, we are left with:
[tex]\[ 2 \cdot (m^4 n - 3) \][/tex]

Step 5: Distribute the 2.
[tex]\[ 2 \cdot (m^4 n - 3) = 2 m^4 n - 6 \][/tex]

So, the simplified form of the given expression [tex]\(\frac{10 m^5 n^2 - 30 m n}{5 m n}\)[/tex] is:
[tex]\[ 2 m^4 n - 6 \][/tex]