Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Absolutely, let's simplify the given expression step-by-step:
We start with the expression:
[tex]\[ \frac{10 m^5 n^2 - 30 m n}{5 m n} \][/tex]
Step 1: Factor the numerator and the denominator separately.
The numerator is:
[tex]\[ 10 m^5 n^2 - 30 m n \][/tex]
We can factor out the greatest common factor (GCF). The GCF in the numerator is [tex]\(10 m n\)[/tex], so we have:
[tex]\[ 10 m^5 n^2 - 30 m n = 10 m n (m^4 n - 3) \][/tex]
The denominator is:
[tex]\[ 5 m n \][/tex]
Step 2: Write the expression with the factored form of the numerator.
[tex]\[ \frac{10 m n (m^4 n - 3)}{5 m n} \][/tex]
Step 3: Cancel out the common factor in the numerator and the denominator.
[tex]\(5 m n\)[/tex] is a common factor in both the numerator and the denominator:
[tex]\[ \frac{10 m n (m^4 n - 3)}{5 m n} = \frac{10}{5} \cdot \frac{m n}{m n} \cdot (m^4 n - 3) \][/tex]
Step 4: Simplify the fraction.
[tex]\[ \frac{10}{5} = 2 \][/tex]
[tex]\[ \frac{m n}{m n} = 1 \][/tex]
Thus, we are left with:
[tex]\[ 2 \cdot (m^4 n - 3) \][/tex]
Step 5: Distribute the 2.
[tex]\[ 2 \cdot (m^4 n - 3) = 2 m^4 n - 6 \][/tex]
So, the simplified form of the given expression [tex]\(\frac{10 m^5 n^2 - 30 m n}{5 m n}\)[/tex] is:
[tex]\[ 2 m^4 n - 6 \][/tex]
We start with the expression:
[tex]\[ \frac{10 m^5 n^2 - 30 m n}{5 m n} \][/tex]
Step 1: Factor the numerator and the denominator separately.
The numerator is:
[tex]\[ 10 m^5 n^2 - 30 m n \][/tex]
We can factor out the greatest common factor (GCF). The GCF in the numerator is [tex]\(10 m n\)[/tex], so we have:
[tex]\[ 10 m^5 n^2 - 30 m n = 10 m n (m^4 n - 3) \][/tex]
The denominator is:
[tex]\[ 5 m n \][/tex]
Step 2: Write the expression with the factored form of the numerator.
[tex]\[ \frac{10 m n (m^4 n - 3)}{5 m n} \][/tex]
Step 3: Cancel out the common factor in the numerator and the denominator.
[tex]\(5 m n\)[/tex] is a common factor in both the numerator and the denominator:
[tex]\[ \frac{10 m n (m^4 n - 3)}{5 m n} = \frac{10}{5} \cdot \frac{m n}{m n} \cdot (m^4 n - 3) \][/tex]
Step 4: Simplify the fraction.
[tex]\[ \frac{10}{5} = 2 \][/tex]
[tex]\[ \frac{m n}{m n} = 1 \][/tex]
Thus, we are left with:
[tex]\[ 2 \cdot (m^4 n - 3) \][/tex]
Step 5: Distribute the 2.
[tex]\[ 2 \cdot (m^4 n - 3) = 2 m^4 n - 6 \][/tex]
So, the simplified form of the given expression [tex]\(\frac{10 m^5 n^2 - 30 m n}{5 m n}\)[/tex] is:
[tex]\[ 2 m^4 n - 6 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.