Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the domain and range of the relation [tex]\( S = \{ (2, a), (0, 2), (3, c), (3, b) \} \)[/tex], let's understand the definitions first:
1. Domain: The domain of a relation is the set of all first elements (or inputs) in the ordered pairs of the relation.
2. Range: The range of a relation is the set of all second elements (or outputs) in the ordered pairs of the relation.
Now, let's identify the domain and range from the given set [tex]\( S \)[/tex].
Step-by-Step Solution:
1. List the ordered pairs in the relation [tex]\( S \)[/tex]:
[tex]\[ S = \{ (2, a), (0, 2), (3, c), (3, b) \} \][/tex]
2. Identify the first elements (those will form the domain):
- The first element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( 2 \)[/tex].
- The first element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 0 \)[/tex].
- The first element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( 3 \)[/tex].
- The first element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( 3 \)[/tex].
3. Combine these first elements into a set (since sets do not include duplicates):
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
4. Identify the second elements (those will form the range):
- The second element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( a \)[/tex].
- The second element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 2 \)[/tex].
- The second element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( c \)[/tex].
- The second element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( b \)[/tex].
5. Combine these second elements into a set (again, no duplicates):
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
So, the domain and range of the relation [tex]\( S \)[/tex] are:
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
1. Domain: The domain of a relation is the set of all first elements (or inputs) in the ordered pairs of the relation.
2. Range: The range of a relation is the set of all second elements (or outputs) in the ordered pairs of the relation.
Now, let's identify the domain and range from the given set [tex]\( S \)[/tex].
Step-by-Step Solution:
1. List the ordered pairs in the relation [tex]\( S \)[/tex]:
[tex]\[ S = \{ (2, a), (0, 2), (3, c), (3, b) \} \][/tex]
2. Identify the first elements (those will form the domain):
- The first element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( 2 \)[/tex].
- The first element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 0 \)[/tex].
- The first element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( 3 \)[/tex].
- The first element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( 3 \)[/tex].
3. Combine these first elements into a set (since sets do not include duplicates):
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
4. Identify the second elements (those will form the range):
- The second element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( a \)[/tex].
- The second element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 2 \)[/tex].
- The second element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( c \)[/tex].
- The second element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( b \)[/tex].
5. Combine these second elements into a set (again, no duplicates):
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
So, the domain and range of the relation [tex]\( S \)[/tex] are:
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.