Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the domain and range of the relation [tex]\( S = \{ (2, a), (0, 2), (3, c), (3, b) \} \)[/tex], let's understand the definitions first:
1. Domain: The domain of a relation is the set of all first elements (or inputs) in the ordered pairs of the relation.
2. Range: The range of a relation is the set of all second elements (or outputs) in the ordered pairs of the relation.
Now, let's identify the domain and range from the given set [tex]\( S \)[/tex].
Step-by-Step Solution:
1. List the ordered pairs in the relation [tex]\( S \)[/tex]:
[tex]\[ S = \{ (2, a), (0, 2), (3, c), (3, b) \} \][/tex]
2. Identify the first elements (those will form the domain):
- The first element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( 2 \)[/tex].
- The first element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 0 \)[/tex].
- The first element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( 3 \)[/tex].
- The first element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( 3 \)[/tex].
3. Combine these first elements into a set (since sets do not include duplicates):
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
4. Identify the second elements (those will form the range):
- The second element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( a \)[/tex].
- The second element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 2 \)[/tex].
- The second element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( c \)[/tex].
- The second element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( b \)[/tex].
5. Combine these second elements into a set (again, no duplicates):
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
So, the domain and range of the relation [tex]\( S \)[/tex] are:
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
1. Domain: The domain of a relation is the set of all first elements (or inputs) in the ordered pairs of the relation.
2. Range: The range of a relation is the set of all second elements (or outputs) in the ordered pairs of the relation.
Now, let's identify the domain and range from the given set [tex]\( S \)[/tex].
Step-by-Step Solution:
1. List the ordered pairs in the relation [tex]\( S \)[/tex]:
[tex]\[ S = \{ (2, a), (0, 2), (3, c), (3, b) \} \][/tex]
2. Identify the first elements (those will form the domain):
- The first element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( 2 \)[/tex].
- The first element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 0 \)[/tex].
- The first element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( 3 \)[/tex].
- The first element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( 3 \)[/tex].
3. Combine these first elements into a set (since sets do not include duplicates):
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
4. Identify the second elements (those will form the range):
- The second element of the pair [tex]\( (2, a) \)[/tex] is [tex]\( a \)[/tex].
- The second element of the pair [tex]\( (0, 2) \)[/tex] is [tex]\( 2 \)[/tex].
- The second element of the pair [tex]\( (3, c) \)[/tex] is [tex]\( c \)[/tex].
- The second element of the pair [tex]\( (3, b) \)[/tex] is [tex]\( b \)[/tex].
5. Combine these second elements into a set (again, no duplicates):
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
So, the domain and range of the relation [tex]\( S \)[/tex] are:
[tex]\[ \text{Domain} = \{ 0, 2, 3 \} \][/tex]
[tex]\[ \text{Range} = \{ a, 2, c, b \} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.