Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given [tex]\(\theta = \frac{9\pi}{4}\)[/tex], we aim to sketch this angle in standard position.
1. Identify the range: First, we need to determine the equivalent angle in the standard position, which must lie between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex].
2. Find the equivalent angle: Since [tex]\(\theta = \frac{9\pi}{4}\)[/tex] is more than [tex]\(2\pi\)[/tex], we need to reduce it within the range [tex]\(0 \leq \theta < 2\pi\)[/tex]:
- Subtract [tex]\(2\pi\)[/tex] from [tex]\(\frac{9\pi}{4}\)[/tex] to bring it into the desired range:
[tex]\[ \frac{9\pi}{4} - 2\pi = \frac{9\pi}{4} - \frac{8\pi}{4} = \frac{\pi}{4} \][/tex]
3. Standard position: Thus, the equivalent angle is [tex]\(\frac{\pi}{4}\)[/tex].
4. Sketch the angle:
- Draw the x-axis and y-axis.
- Starting from the positive x-axis, measure an angle of [tex]\(\frac{\pi}{4}\)[/tex] in the counterclockwise direction.
- This angle, [tex]\(\frac{\pi}{4}\)[/tex], corresponds to 45 degrees.
- Draw a ray from the origin making an angle of [tex]\(\frac{\pi}{4}\)[/tex] with the positive x-axis.
The sketch will show a line originating from the origin and intersecting the first quadrant of the coordinate plane, making a 45-degree angle with the positive x-axis.
1. Identify the range: First, we need to determine the equivalent angle in the standard position, which must lie between [tex]\(0\)[/tex] and [tex]\(2\pi\)[/tex].
2. Find the equivalent angle: Since [tex]\(\theta = \frac{9\pi}{4}\)[/tex] is more than [tex]\(2\pi\)[/tex], we need to reduce it within the range [tex]\(0 \leq \theta < 2\pi\)[/tex]:
- Subtract [tex]\(2\pi\)[/tex] from [tex]\(\frac{9\pi}{4}\)[/tex] to bring it into the desired range:
[tex]\[ \frac{9\pi}{4} - 2\pi = \frac{9\pi}{4} - \frac{8\pi}{4} = \frac{\pi}{4} \][/tex]
3. Standard position: Thus, the equivalent angle is [tex]\(\frac{\pi}{4}\)[/tex].
4. Sketch the angle:
- Draw the x-axis and y-axis.
- Starting from the positive x-axis, measure an angle of [tex]\(\frac{\pi}{4}\)[/tex] in the counterclockwise direction.
- This angle, [tex]\(\frac{\pi}{4}\)[/tex], corresponds to 45 degrees.
- Draw a ray from the origin making an angle of [tex]\(\frac{\pi}{4}\)[/tex] with the positive x-axis.
The sketch will show a line originating from the origin and intersecting the first quadrant of the coordinate plane, making a 45-degree angle with the positive x-axis.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.