Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the volume of oxygen gas required to react with 13.5 grams of copper (I) sulfide [tex]\(Cu_2S\)[/tex] at a temperature of [tex]\(30.7^{\circ} \text{C}\)[/tex] and pressure of [tex]\(4.6 \text{ atm}\)[/tex], we follow these steps:
1. Convert the temperature to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 = 30.7 + 273.15 = 303.85 \text{ K} \][/tex]
2. Calculate the moles of [tex]\(Cu_2S\)[/tex]:
The molar mass of [tex]\(Cu_2S\)[/tex] is 159.16 g/mol.
[tex]\[ \text{Moles of } Cu_2S = \frac{\text{mass}}{\text{molar mass}} = \frac{13.5 \text{ g}}{159.16 \text{ g/mol}} \approx 0.08482 \text{ mol} \][/tex]
3. Determine the stoichiometry factor:
From the balanced chemical equation:
[tex]\[ Cu_2S(s) + O_2(g) \rightarrow Cu_2O(s) + SO_2(g) \][/tex]
It is clear that 1 mole of [tex]\(Cu_2S\)[/tex] reacts with 1 mole of [tex]\(O_2\)[/tex]. Thus, the stoichiometry factor is 1.
4. Calculate the moles of [tex]\(O_2\)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \text{moles of } Cu_2S \times \text{stoichiometry factor} = 0.08482 \text{ mol} \times 1 = 0.08482 \text{ mol} \][/tex]
5. Use the ideal gas law to calculate the volume of [tex]\(O_2\)[/tex]:
The ideal gas law is given by [tex]\(PV = nRT\)[/tex]. Solving for the volume [tex]\(V\)[/tex]:
[tex]\[ V = \frac{nRT}{P} \][/tex]
Where:
- [tex]\(n\)[/tex] is the moles of [tex]\(O_2\)[/tex]: 0.08482 mol
- [tex]\(R\)[/tex] is the ideal gas constant: 0.0821 L·atm/(mol·K)
- [tex]\(T\)[/tex] is the temperature in Kelvin: 303.85 K
- [tex]\(P\)[/tex] is the pressure in atm: 4.6 atm
Plugging in the values:
[tex]\[ V = \frac{0.08482 \text{ mol} \times 0.0821 \text{ L·atm/(mol·K)} \times 303.85 \text{ K}}{4.6 \text{ atm}} \][/tex]
Simplifying the expression:
[tex]\[ V \approx 0.45999 \text{ L} \][/tex]
Hence, the volume of oxygen gas required is approximately [tex]\(0.460 \text{ L}\)[/tex] (rounded to three significant figures).
1. Convert the temperature to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 = 30.7 + 273.15 = 303.85 \text{ K} \][/tex]
2. Calculate the moles of [tex]\(Cu_2S\)[/tex]:
The molar mass of [tex]\(Cu_2S\)[/tex] is 159.16 g/mol.
[tex]\[ \text{Moles of } Cu_2S = \frac{\text{mass}}{\text{molar mass}} = \frac{13.5 \text{ g}}{159.16 \text{ g/mol}} \approx 0.08482 \text{ mol} \][/tex]
3. Determine the stoichiometry factor:
From the balanced chemical equation:
[tex]\[ Cu_2S(s) + O_2(g) \rightarrow Cu_2O(s) + SO_2(g) \][/tex]
It is clear that 1 mole of [tex]\(Cu_2S\)[/tex] reacts with 1 mole of [tex]\(O_2\)[/tex]. Thus, the stoichiometry factor is 1.
4. Calculate the moles of [tex]\(O_2\)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \text{moles of } Cu_2S \times \text{stoichiometry factor} = 0.08482 \text{ mol} \times 1 = 0.08482 \text{ mol} \][/tex]
5. Use the ideal gas law to calculate the volume of [tex]\(O_2\)[/tex]:
The ideal gas law is given by [tex]\(PV = nRT\)[/tex]. Solving for the volume [tex]\(V\)[/tex]:
[tex]\[ V = \frac{nRT}{P} \][/tex]
Where:
- [tex]\(n\)[/tex] is the moles of [tex]\(O_2\)[/tex]: 0.08482 mol
- [tex]\(R\)[/tex] is the ideal gas constant: 0.0821 L·atm/(mol·K)
- [tex]\(T\)[/tex] is the temperature in Kelvin: 303.85 K
- [tex]\(P\)[/tex] is the pressure in atm: 4.6 atm
Plugging in the values:
[tex]\[ V = \frac{0.08482 \text{ mol} \times 0.0821 \text{ L·atm/(mol·K)} \times 303.85 \text{ K}}{4.6 \text{ atm}} \][/tex]
Simplifying the expression:
[tex]\[ V \approx 0.45999 \text{ L} \][/tex]
Hence, the volume of oxygen gas required is approximately [tex]\(0.460 \text{ L}\)[/tex] (rounded to three significant figures).
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.