Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What volume of oxygen gas, measured at [tex]\(30.7^{\circ} C\)[/tex] and [tex]\(4.6 \, atm\)[/tex], is required to react with 13.5 grams of copper(I) sulfide?

[tex]\[ \text{Cu}_2\text{S} (s) + \text{O}_2 (g) \rightarrow \text{Cu}_2\text{O} (s) + \text{SO}_2 (g) \][/tex]

Sagot :

To determine the volume of oxygen gas required to react with 13.5 grams of copper (I) sulfide [tex]\(Cu_2S\)[/tex] at a temperature of [tex]\(30.7^{\circ} \text{C}\)[/tex] and pressure of [tex]\(4.6 \text{ atm}\)[/tex], we follow these steps:

1. Convert the temperature to Kelvin:
[tex]\[ T(K) = T(°C) + 273.15 = 30.7 + 273.15 = 303.85 \text{ K} \][/tex]

2. Calculate the moles of [tex]\(Cu_2S\)[/tex]:
The molar mass of [tex]\(Cu_2S\)[/tex] is 159.16 g/mol.
[tex]\[ \text{Moles of } Cu_2S = \frac{\text{mass}}{\text{molar mass}} = \frac{13.5 \text{ g}}{159.16 \text{ g/mol}} \approx 0.08482 \text{ mol} \][/tex]

3. Determine the stoichiometry factor:
From the balanced chemical equation:
[tex]\[ Cu_2S(s) + O_2(g) \rightarrow Cu_2O(s) + SO_2(g) \][/tex]
It is clear that 1 mole of [tex]\(Cu_2S\)[/tex] reacts with 1 mole of [tex]\(O_2\)[/tex]. Thus, the stoichiometry factor is 1.

4. Calculate the moles of [tex]\(O_2\)[/tex] needed:
[tex]\[ \text{Moles of } O_2 \text{ needed} = \text{moles of } Cu_2S \times \text{stoichiometry factor} = 0.08482 \text{ mol} \times 1 = 0.08482 \text{ mol} \][/tex]

5. Use the ideal gas law to calculate the volume of [tex]\(O_2\)[/tex]:
The ideal gas law is given by [tex]\(PV = nRT\)[/tex]. Solving for the volume [tex]\(V\)[/tex]:
[tex]\[ V = \frac{nRT}{P} \][/tex]
Where:
- [tex]\(n\)[/tex] is the moles of [tex]\(O_2\)[/tex]: 0.08482 mol
- [tex]\(R\)[/tex] is the ideal gas constant: 0.0821 L·atm/(mol·K)
- [tex]\(T\)[/tex] is the temperature in Kelvin: 303.85 K
- [tex]\(P\)[/tex] is the pressure in atm: 4.6 atm

Plugging in the values:
[tex]\[ V = \frac{0.08482 \text{ mol} \times 0.0821 \text{ L·atm/(mol·K)} \times 303.85 \text{ K}}{4.6 \text{ atm}} \][/tex]

Simplifying the expression:
[tex]\[ V \approx 0.45999 \text{ L} \][/tex]

Hence, the volume of oxygen gas required is approximately [tex]\(0.460 \text{ L}\)[/tex] (rounded to three significant figures).
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.