Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step by filling in the missing values for each polynomial factorization:
1. For the first polynomial [tex]\(x^2 + 2x - 15 = (ax + b)(cx + d)\)[/tex]:
[tex]\[ (1x - 3)(1x + 5) = x^2 + 5x - 3x - 15 = x^2 + 2x - 15 \][/tex]
From the calculation, we see that [tex]\( a = 1 \)[/tex], [tex]\( b = -3 \)[/tex], [tex]\( c = 1 \)[/tex], and [tex]\( d = 5 \)[/tex].
2. For the second polynomial [tex]\(2x^3 + 6x^2 - 20x = 2x(ax + b)(cx + d)\)[/tex]:
[tex]\[ 2x(x - 2)(x + 5) = 2x(x^2 + 3x - 10) = 2x^3 + 6x^2 - 20x \][/tex]
From the calculation, we can deduce that [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], [tex]\( c = 1 \)[/tex], and [tex]\( d = 5 \)[/tex].
3. For the third polynomial [tex]\(9x^2 + 21x + 6 = (ax + b)(cx + d)\)[/tex]:
[tex]\[ (3x + 2)(3x + 1) = 9x^2 + 3x + 6x + 2 = 9x^2 + 21x + 6 \][/tex]
From the calculation, we find that [tex]\( a = 3 \)[/tex], [tex]\( b = 2 \)[/tex], [tex]\( c = 3 \)[/tex], and [tex]\( d = 1 \)[/tex].
Therefore, the complete table with the filled missing values is:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline a & b & c & d \\ \hline 1. & 1 & -3 & 1 & 5 \\ \hline 2. & 1 & -2 & 1 & 5 \\ \hline 3. & 3 & 2 & 3 & 1 \\ \hline \end{tabular} \][/tex]
1. For the first polynomial [tex]\(x^2 + 2x - 15 = (ax + b)(cx + d)\)[/tex]:
[tex]\[ (1x - 3)(1x + 5) = x^2 + 5x - 3x - 15 = x^2 + 2x - 15 \][/tex]
From the calculation, we see that [tex]\( a = 1 \)[/tex], [tex]\( b = -3 \)[/tex], [tex]\( c = 1 \)[/tex], and [tex]\( d = 5 \)[/tex].
2. For the second polynomial [tex]\(2x^3 + 6x^2 - 20x = 2x(ax + b)(cx + d)\)[/tex]:
[tex]\[ 2x(x - 2)(x + 5) = 2x(x^2 + 3x - 10) = 2x^3 + 6x^2 - 20x \][/tex]
From the calculation, we can deduce that [tex]\( a = 1 \)[/tex], [tex]\( b = -2 \)[/tex], [tex]\( c = 1 \)[/tex], and [tex]\( d = 5 \)[/tex].
3. For the third polynomial [tex]\(9x^2 + 21x + 6 = (ax + b)(cx + d)\)[/tex]:
[tex]\[ (3x + 2)(3x + 1) = 9x^2 + 3x + 6x + 2 = 9x^2 + 21x + 6 \][/tex]
From the calculation, we find that [tex]\( a = 3 \)[/tex], [tex]\( b = 2 \)[/tex], [tex]\( c = 3 \)[/tex], and [tex]\( d = 1 \)[/tex].
Therefore, the complete table with the filled missing values is:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline a & b & c & d \\ \hline 1. & 1 & -3 & 1 & 5 \\ \hline 2. & 1 & -2 & 1 & 5 \\ \hline 3. & 3 & 2 & 3 & 1 \\ \hline \end{tabular} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.