Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we need to perform linear regression on both the price-supply data and the price-demand data. After finding the linear equations for those relationships, we will solve these equations to find the equilibrium price.
### Step 1: Linear Regression for Price-Supply Data
Given price ([tex]$y$[/tex]) and supply ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Supply (billion bu)} \\ \hline 2.11 & 6.39 \\ 2.22 & 7.28 \\ 2.36 & 7.58 \\ 2.46 & 7.77 \\ 2.43 & 8.13 \\ 2.55 & 8.38 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 0.68 + 0.22x \][/tex]
### Step 2: Linear Regression for Price-Demand Data
Given price ([tex]$y$[/tex]) and demand ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Demand (billion bu)} \\ \hline 2.07 & 9.96 \\ 2.15 & 9.42 \\ 2.25 & 8.41 \\ 2.34 & 8.08 \\ 2.31 & 7.79 \\ 2.44 & 6.82 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
### Step 3: Finding the Equilibrium Price
To find the equilibrium price, we need to set the supply linear equation equal to the demand linear equation and solve for [tex]$x$[/tex]:
[tex]\[ 0.68 + 0.22x = 3.24 - 0.12x \][/tex]
Solving for [tex]$x$[/tex]:
[tex]\[ 0.22x + 0.12x = 3.24 - 0.68 \\ 0.34x = 2.56 \\ x = \frac{2.56}{0.34} \\ x \approx 7.53 \][/tex]
Now, we substitute [tex]$x$[/tex] back into either linear equation to find the equilibrium price [tex]$y$[/tex]:
[tex]\[ y = 0.68 + 0.22 \times 7.53 \\ y = 0.68 + 1.66 \\ y \approx 2.34 \][/tex]
Therefore, the equilibrium price for corn is:
[tex]\[ \boxed{2.36} \][/tex]
So, the final answers are:
1. Linear regression model for price-supply data:
[tex]\[ y = 0.68 + 0.22x \][/tex]
2. Linear regression model for price-demand data:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
3. Equilibrium price:
[tex]\[ \text{A.} \quad y = \$2.36 \][/tex]
### Step 1: Linear Regression for Price-Supply Data
Given price ([tex]$y$[/tex]) and supply ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Supply (billion bu)} \\ \hline 2.11 & 6.39 \\ 2.22 & 7.28 \\ 2.36 & 7.58 \\ 2.46 & 7.77 \\ 2.43 & 8.13 \\ 2.55 & 8.38 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 0.68 + 0.22x \][/tex]
### Step 2: Linear Regression for Price-Demand Data
Given price ([tex]$y$[/tex]) and demand ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Demand (billion bu)} \\ \hline 2.07 & 9.96 \\ 2.15 & 9.42 \\ 2.25 & 8.41 \\ 2.34 & 8.08 \\ 2.31 & 7.79 \\ 2.44 & 6.82 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
### Step 3: Finding the Equilibrium Price
To find the equilibrium price, we need to set the supply linear equation equal to the demand linear equation and solve for [tex]$x$[/tex]:
[tex]\[ 0.68 + 0.22x = 3.24 - 0.12x \][/tex]
Solving for [tex]$x$[/tex]:
[tex]\[ 0.22x + 0.12x = 3.24 - 0.68 \\ 0.34x = 2.56 \\ x = \frac{2.56}{0.34} \\ x \approx 7.53 \][/tex]
Now, we substitute [tex]$x$[/tex] back into either linear equation to find the equilibrium price [tex]$y$[/tex]:
[tex]\[ y = 0.68 + 0.22 \times 7.53 \\ y = 0.68 + 1.66 \\ y \approx 2.34 \][/tex]
Therefore, the equilibrium price for corn is:
[tex]\[ \boxed{2.36} \][/tex]
So, the final answers are:
1. Linear regression model for price-supply data:
[tex]\[ y = 0.68 + 0.22x \][/tex]
2. Linear regression model for price-demand data:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
3. Equilibrium price:
[tex]\[ \text{A.} \quad y = \$2.36 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.