Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to perform linear regression on both the price-supply data and the price-demand data. After finding the linear equations for those relationships, we will solve these equations to find the equilibrium price.
### Step 1: Linear Regression for Price-Supply Data
Given price ([tex]$y$[/tex]) and supply ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Supply (billion bu)} \\ \hline 2.11 & 6.39 \\ 2.22 & 7.28 \\ 2.36 & 7.58 \\ 2.46 & 7.77 \\ 2.43 & 8.13 \\ 2.55 & 8.38 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 0.68 + 0.22x \][/tex]
### Step 2: Linear Regression for Price-Demand Data
Given price ([tex]$y$[/tex]) and demand ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Demand (billion bu)} \\ \hline 2.07 & 9.96 \\ 2.15 & 9.42 \\ 2.25 & 8.41 \\ 2.34 & 8.08 \\ 2.31 & 7.79 \\ 2.44 & 6.82 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
### Step 3: Finding the Equilibrium Price
To find the equilibrium price, we need to set the supply linear equation equal to the demand linear equation and solve for [tex]$x$[/tex]:
[tex]\[ 0.68 + 0.22x = 3.24 - 0.12x \][/tex]
Solving for [tex]$x$[/tex]:
[tex]\[ 0.22x + 0.12x = 3.24 - 0.68 \\ 0.34x = 2.56 \\ x = \frac{2.56}{0.34} \\ x \approx 7.53 \][/tex]
Now, we substitute [tex]$x$[/tex] back into either linear equation to find the equilibrium price [tex]$y$[/tex]:
[tex]\[ y = 0.68 + 0.22 \times 7.53 \\ y = 0.68 + 1.66 \\ y \approx 2.34 \][/tex]
Therefore, the equilibrium price for corn is:
[tex]\[ \boxed{2.36} \][/tex]
So, the final answers are:
1. Linear regression model for price-supply data:
[tex]\[ y = 0.68 + 0.22x \][/tex]
2. Linear regression model for price-demand data:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
3. Equilibrium price:
[tex]\[ \text{A.} \quad y = \$2.36 \][/tex]
### Step 1: Linear Regression for Price-Supply Data
Given price ([tex]$y$[/tex]) and supply ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Supply (billion bu)} \\ \hline 2.11 & 6.39 \\ 2.22 & 7.28 \\ 2.36 & 7.58 \\ 2.46 & 7.77 \\ 2.43 & 8.13 \\ 2.55 & 8.38 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 0.68 + 0.22x \][/tex]
### Step 2: Linear Regression for Price-Demand Data
Given price ([tex]$y$[/tex]) and demand ([tex]$x$[/tex]) data:
[tex]\[ \begin{array}{cc} \text{Price} (\$/\text{bu}) & \text{Demand (billion bu)} \\ \hline 2.07 & 9.96 \\ 2.15 & 9.42 \\ 2.25 & 8.41 \\ 2.34 & 8.08 \\ 2.31 & 7.79 \\ 2.44 & 6.82 \\ \end{array} \][/tex]
The linear regression model for this data yields the equation:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
### Step 3: Finding the Equilibrium Price
To find the equilibrium price, we need to set the supply linear equation equal to the demand linear equation and solve for [tex]$x$[/tex]:
[tex]\[ 0.68 + 0.22x = 3.24 - 0.12x \][/tex]
Solving for [tex]$x$[/tex]:
[tex]\[ 0.22x + 0.12x = 3.24 - 0.68 \\ 0.34x = 2.56 \\ x = \frac{2.56}{0.34} \\ x \approx 7.53 \][/tex]
Now, we substitute [tex]$x$[/tex] back into either linear equation to find the equilibrium price [tex]$y$[/tex]:
[tex]\[ y = 0.68 + 0.22 \times 7.53 \\ y = 0.68 + 1.66 \\ y \approx 2.34 \][/tex]
Therefore, the equilibrium price for corn is:
[tex]\[ \boxed{2.36} \][/tex]
So, the final answers are:
1. Linear regression model for price-supply data:
[tex]\[ y = 0.68 + 0.22x \][/tex]
2. Linear regression model for price-demand data:
[tex]\[ y = 3.24 + (-0.12)x \][/tex]
3. Equilibrium price:
[tex]\[ \text{A.} \quad y = \$2.36 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.