Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's provide a detailed step-by-step solution for the function [tex]\( f(x) = -\frac{1}{x-4} \)[/tex].
### Step-by-Step Solution:
1. Understanding the Function:
The function [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] is a rational function where the numerator is -1 and the denominator is [tex]\( x - 4 \)[/tex].
2. Identifying the Domain:
- The function [tex]\( f(x) \)[/tex] is defined for all [tex]\( x \)[/tex] except where the denominator is zero.
- To find where the denominator is zero, set [tex]\( x - 4 = 0 \)[/tex].
- Solving this, [tex]\( x = 4 \)[/tex].
- Therefore, the domain of the function is all real numbers except [tex]\( x = 4 \)[/tex]. In interval notation, this is [tex]\( (-\infty, 4) \cup (4, \infty) \)[/tex].
3. Analyzing Vertical Asymptote:
- A vertical asymptote occurs where the function's denominator is zero and the numerator is non-zero.
- Here, [tex]\( x = 4 \)[/tex] is the location of the vertical asymptote.
4. Determining Horizontal Asymptote:
- For large values of [tex]\( |x| \)[/tex], to determine the behavior of [tex]\( f(x) \)[/tex], we see that [tex]\( x - 4 \)[/tex] behaves like [tex]\( x \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex], [tex]\( f(x) \)[/tex] approaches 0.
- Therefore, the horizontal asymptote is [tex]\( y = 0 \)[/tex].
5. Graphing the Function:
- The function [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] will approach the vertical asymptote [tex]\( x = 4 \)[/tex] but never touch or cross it.
- It will also approach the horizontal asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] goes to positive or negative infinity.
6. Behavior Near the Asymptotes:
- As [tex]\( x \)[/tex] approaches 4 from the left ([tex]\( x \to 4^- \)[/tex]), [tex]\( x - 4 \)[/tex] is negative and very small; thus, [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] becomes positive and very large.
- As [tex]\( x \)[/tex] approaches 4 from the right ([tex]\( x \to 4^+ \)[/tex]), [tex]\( x - 4 \)[/tex] is positive and very small; thus, [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] becomes negative and very large in magnitude but negative in value.
### Intervals and Signs:
- For [tex]\( x < 4 \)[/tex]:
[tex]\( x - 4 \)[/tex] is negative, so [tex]\( -\frac{1}{x-4} \)[/tex] is positive.
- For [tex]\( x > 4 \)[/tex]:
[tex]\( x - 4 \)[/tex] is positive, so [tex]\( -\frac{1}{x-4} \)[/tex] is negative.
### Summary:
- Vertical Asymptote: [tex]\( x = 4 \)[/tex]
- Horizontal Asymptote: [tex]\( y = 0 \)[/tex]
- Domain: [tex]\( (-\infty, 4) \cup (4, \infty) \)[/tex]
- The graph approaches [tex]\( y = 0 \)[/tex] as [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex].
- The function value becomes very large positive as [tex]\( x \to 4^- \)[/tex] and very large negative as [tex]\( x \to 4^+ \)[/tex].
Thus, we have analyzed the function [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] in great detail!
### Step-by-Step Solution:
1. Understanding the Function:
The function [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] is a rational function where the numerator is -1 and the denominator is [tex]\( x - 4 \)[/tex].
2. Identifying the Domain:
- The function [tex]\( f(x) \)[/tex] is defined for all [tex]\( x \)[/tex] except where the denominator is zero.
- To find where the denominator is zero, set [tex]\( x - 4 = 0 \)[/tex].
- Solving this, [tex]\( x = 4 \)[/tex].
- Therefore, the domain of the function is all real numbers except [tex]\( x = 4 \)[/tex]. In interval notation, this is [tex]\( (-\infty, 4) \cup (4, \infty) \)[/tex].
3. Analyzing Vertical Asymptote:
- A vertical asymptote occurs where the function's denominator is zero and the numerator is non-zero.
- Here, [tex]\( x = 4 \)[/tex] is the location of the vertical asymptote.
4. Determining Horizontal Asymptote:
- For large values of [tex]\( |x| \)[/tex], to determine the behavior of [tex]\( f(x) \)[/tex], we see that [tex]\( x - 4 \)[/tex] behaves like [tex]\( x \)[/tex].
- As [tex]\( x \)[/tex] approaches [tex]\( \infty \)[/tex] or [tex]\( -\infty \)[/tex], [tex]\( f(x) \)[/tex] approaches 0.
- Therefore, the horizontal asymptote is [tex]\( y = 0 \)[/tex].
5. Graphing the Function:
- The function [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] will approach the vertical asymptote [tex]\( x = 4 \)[/tex] but never touch or cross it.
- It will also approach the horizontal asymptote [tex]\( y = 0 \)[/tex] as [tex]\( x \)[/tex] goes to positive or negative infinity.
6. Behavior Near the Asymptotes:
- As [tex]\( x \)[/tex] approaches 4 from the left ([tex]\( x \to 4^- \)[/tex]), [tex]\( x - 4 \)[/tex] is negative and very small; thus, [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] becomes positive and very large.
- As [tex]\( x \)[/tex] approaches 4 from the right ([tex]\( x \to 4^+ \)[/tex]), [tex]\( x - 4 \)[/tex] is positive and very small; thus, [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] becomes negative and very large in magnitude but negative in value.
### Intervals and Signs:
- For [tex]\( x < 4 \)[/tex]:
[tex]\( x - 4 \)[/tex] is negative, so [tex]\( -\frac{1}{x-4} \)[/tex] is positive.
- For [tex]\( x > 4 \)[/tex]:
[tex]\( x - 4 \)[/tex] is positive, so [tex]\( -\frac{1}{x-4} \)[/tex] is negative.
### Summary:
- Vertical Asymptote: [tex]\( x = 4 \)[/tex]
- Horizontal Asymptote: [tex]\( y = 0 \)[/tex]
- Domain: [tex]\( (-\infty, 4) \cup (4, \infty) \)[/tex]
- The graph approaches [tex]\( y = 0 \)[/tex] as [tex]\( x \to \infty \)[/tex] or [tex]\( x \to -\infty \)[/tex].
- The function value becomes very large positive as [tex]\( x \to 4^- \)[/tex] and very large negative as [tex]\( x \to 4^+ \)[/tex].
Thus, we have analyzed the function [tex]\( f(x) = -\frac{1}{x-4} \)[/tex] in great detail!
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.