Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's walk through the expression step-by-step.
We are given the function:
[tex]\[ f(x) = \frac{8x + 1}{3x - 6} \][/tex]
To understand and interpret this function, follow these steps:
1. Identify the numerator and denominator:
- The numerator is: [tex]\(8x + 1\)[/tex]
- The denominator is: [tex]\(3x - 6\)[/tex]
2. Simplify the function:
Look to see if there are any common factors between the numerator and the denominator that you can simplify. In this case, there are no common factors to simplify further.
3. Understand the domain of the function:
The function [tex]\( f(x) \)[/tex] is undefined when the denominator is [tex]\(0\)[/tex]. Therefore, we need to find the values of [tex]\(x\)[/tex] which make the denominator zero:
[tex]\[ 3x - 6 = 0 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ 3x = 6 \][/tex]
[tex]\[ x = 2 \][/tex]
Hence, the function is undefined at [tex]\( x = 2 \)[/tex]. Thus, the domain of [tex]\( f(x) \)[/tex] is all real numbers except [tex]\(x \neq 2\)[/tex].
4. Analyze the function properties:
- Vertical Asymptote: Since the denominator becomes 0 at [tex]\(x = 2\)[/tex], there is a vertical asymptote at [tex]\(x = 2\)[/tex].
- Horizontal Asymptote: For large values of [tex]\( |x| \)[/tex], both [tex]\(8x + 1\)[/tex] and [tex]\(3x - 6\)[/tex] are dominated by the terms with [tex]\(x\)[/tex]. Comparing the leading coefficients (the coefficients of [tex]\(x\)[/tex] in the numerator and the denominator), we can determine:
[tex]\[ \lim_{{x \to \infty}} \frac{8x + 1}{3x - 6} = \frac{8}{3} \][/tex]
Therefore, the horizontal asymptote is [tex]\( y = \frac{8}{3} \)[/tex].
5. Intercepts:
- Y-intercept: To find the y-intercept, set [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = \frac{8(0) + 1}{3(0) - 6} = \frac{1}{-6} = -\frac{1}{6} \][/tex]
- X-intercept: To find the x-intercept, set the numerator [tex]\(8x + 1 = 0\)[/tex]:
[tex]\[ 8x + 1 = 0 \][/tex]
[tex]\[ 8x = -1 \][/tex]
[tex]\[ x = -\frac{1}{8} \][/tex]
So, the x-intercept is [tex]\( x = -\frac{1}{8} \)[/tex].
By following these steps, we have analyzed and interpreted the function [tex]\( f(x) = \frac{8x + 1}{3x - 6} \)[/tex] in detail.
We are given the function:
[tex]\[ f(x) = \frac{8x + 1}{3x - 6} \][/tex]
To understand and interpret this function, follow these steps:
1. Identify the numerator and denominator:
- The numerator is: [tex]\(8x + 1\)[/tex]
- The denominator is: [tex]\(3x - 6\)[/tex]
2. Simplify the function:
Look to see if there are any common factors between the numerator and the denominator that you can simplify. In this case, there are no common factors to simplify further.
3. Understand the domain of the function:
The function [tex]\( f(x) \)[/tex] is undefined when the denominator is [tex]\(0\)[/tex]. Therefore, we need to find the values of [tex]\(x\)[/tex] which make the denominator zero:
[tex]\[ 3x - 6 = 0 \][/tex]
Solve for [tex]\(x\)[/tex]:
[tex]\[ 3x = 6 \][/tex]
[tex]\[ x = 2 \][/tex]
Hence, the function is undefined at [tex]\( x = 2 \)[/tex]. Thus, the domain of [tex]\( f(x) \)[/tex] is all real numbers except [tex]\(x \neq 2\)[/tex].
4. Analyze the function properties:
- Vertical Asymptote: Since the denominator becomes 0 at [tex]\(x = 2\)[/tex], there is a vertical asymptote at [tex]\(x = 2\)[/tex].
- Horizontal Asymptote: For large values of [tex]\( |x| \)[/tex], both [tex]\(8x + 1\)[/tex] and [tex]\(3x - 6\)[/tex] are dominated by the terms with [tex]\(x\)[/tex]. Comparing the leading coefficients (the coefficients of [tex]\(x\)[/tex] in the numerator and the denominator), we can determine:
[tex]\[ \lim_{{x \to \infty}} \frac{8x + 1}{3x - 6} = \frac{8}{3} \][/tex]
Therefore, the horizontal asymptote is [tex]\( y = \frac{8}{3} \)[/tex].
5. Intercepts:
- Y-intercept: To find the y-intercept, set [tex]\(x = 0\)[/tex]:
[tex]\[ f(0) = \frac{8(0) + 1}{3(0) - 6} = \frac{1}{-6} = -\frac{1}{6} \][/tex]
- X-intercept: To find the x-intercept, set the numerator [tex]\(8x + 1 = 0\)[/tex]:
[tex]\[ 8x + 1 = 0 \][/tex]
[tex]\[ 8x = -1 \][/tex]
[tex]\[ x = -\frac{1}{8} \][/tex]
So, the x-intercept is [tex]\( x = -\frac{1}{8} \)[/tex].
By following these steps, we have analyzed and interpreted the function [tex]\( f(x) = \frac{8x + 1}{3x - 6} \)[/tex] in detail.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.