At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the rate of change of the function represented by the given table, we need to follow these steps:
1. Identify the points on the table:
- Point 1: [tex]\( (1, -8.5) \)[/tex]
- Point 2: [tex]\( (2, -6) \)[/tex]
- Point 3: [tex]\( (3, -3.5) \)[/tex]
- Point 4: [tex]\( (4, -1) \)[/tex]
2. Calculate the change in [tex]\( y \)[/tex] ([tex]\(\Delta y\)[/tex]) over the range of [tex]\( y \)[/tex] values:
[tex]\[ \Delta y = y_{\text{final}} - y_{\text{initial}} = -1 - (-8.5) \][/tex]
[tex]\[ \Delta y = -1 + 8.5 = 7.5 \][/tex]
3. Calculate the change in [tex]\( x \)[/tex] ([tex]\(\Delta x\)[/tex]) over the range of [tex]\( x \)[/tex] values:
[tex]\[ \Delta x = x_{\text{final}} - x_{\text{initial}} = 4 - 1 \][/tex]
[tex]\[ \Delta x = 3 \][/tex]
4. Finally, calculate the rate of change ([tex]\(\frac{\Delta y}{\Delta x}\)[/tex]):
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} = \frac{7.5}{3} \][/tex]
[tex]\[ \text{Rate of change} = 2.5 \][/tex]
Therefore, the rate of change of the function represented by the given table is [tex]\( 2.5 \)[/tex].
1. Identify the points on the table:
- Point 1: [tex]\( (1, -8.5) \)[/tex]
- Point 2: [tex]\( (2, -6) \)[/tex]
- Point 3: [tex]\( (3, -3.5) \)[/tex]
- Point 4: [tex]\( (4, -1) \)[/tex]
2. Calculate the change in [tex]\( y \)[/tex] ([tex]\(\Delta y\)[/tex]) over the range of [tex]\( y \)[/tex] values:
[tex]\[ \Delta y = y_{\text{final}} - y_{\text{initial}} = -1 - (-8.5) \][/tex]
[tex]\[ \Delta y = -1 + 8.5 = 7.5 \][/tex]
3. Calculate the change in [tex]\( x \)[/tex] ([tex]\(\Delta x\)[/tex]) over the range of [tex]\( x \)[/tex] values:
[tex]\[ \Delta x = x_{\text{final}} - x_{\text{initial}} = 4 - 1 \][/tex]
[tex]\[ \Delta x = 3 \][/tex]
4. Finally, calculate the rate of change ([tex]\(\frac{\Delta y}{\Delta x}\)[/tex]):
[tex]\[ \text{Rate of change} = \frac{\Delta y}{\Delta x} = \frac{7.5}{3} \][/tex]
[tex]\[ \text{Rate of change} = 2.5 \][/tex]
Therefore, the rate of change of the function represented by the given table is [tex]\( 2.5 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.