Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the rate of change of the distance Carol traveled while cross-country skiing, we need to calculate the rate of change for each consecutive pair of points (minutes, distance). Let's break it down step-by-step.
### Step-by-Step Solution:
1. Identify Consecutive Pairs of Points:
We have the following data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Minutes} & \text{Distance Traveled (miles)} \\ \hline 2 & \frac{1}{6} \\ \hline 3 & \frac{17}{48} \\ \hline 4 & \frac{13}{24} \\ \hline 5 & \frac{35}{48} \\ \hline 6 & \frac{11}{12} \\ \hline \end{array} \][/tex]
2. Calculate Rate of Change for Each Consecutive Pair:
The rate of change between two points [tex]\((t_1, d_1)\)[/tex] and [tex]\((t_2, d_2)\)[/tex] is given by:
[tex]\[ \text{Rate of Change} = \frac{d_2 - d_1}{t_2 - t_1} \][/tex]
- Between (2, [tex]\(\frac{1}{6}\)[/tex]) and (3, [tex]\(\frac{17}{48}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{17}{48} - \frac{1}{6}}{3 - 2} = \frac{\frac{17}{48} - \frac{8}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
- Between (3, [tex]\(\frac{17}{48}\)[/tex]) and (4, [tex]\(\frac{13}{24}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{13}{24} - \frac{17}{48}}{4 - 3} = \frac{\frac{26}{48} - \frac{17}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
- Between (4, [tex]\(\frac{13}{24}\)[/tex]) and (5, [tex]\(\frac{35}{48}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{35}{48} - \frac{13}{24}}{5 - 4} = \frac{\frac{35}{48} - \frac{26}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
- Between (5, [tex]\(\frac{35}{48}\)[/tex]) and (6, [tex]\(\frac{11}{12}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{11}{12} - \frac{35}{48}}{6 - 5} = \frac{\frac{44}{48} - \frac{35}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
3. Summarize the Rates of Change:
The calculated rates of change between each consecutive pair of points are:
[tex]\[ [0.1875, 0.1875, 0.1875, 0.1875] \][/tex]
Hence, the consistent rate of change of the distance Carol traveled while cross-country skiing is approximately [tex]\(0.1875\)[/tex] miles per minute.
### Step-by-Step Solution:
1. Identify Consecutive Pairs of Points:
We have the following data points:
[tex]\[ \begin{array}{|c|c|} \hline \text{Minutes} & \text{Distance Traveled (miles)} \\ \hline 2 & \frac{1}{6} \\ \hline 3 & \frac{17}{48} \\ \hline 4 & \frac{13}{24} \\ \hline 5 & \frac{35}{48} \\ \hline 6 & \frac{11}{12} \\ \hline \end{array} \][/tex]
2. Calculate Rate of Change for Each Consecutive Pair:
The rate of change between two points [tex]\((t_1, d_1)\)[/tex] and [tex]\((t_2, d_2)\)[/tex] is given by:
[tex]\[ \text{Rate of Change} = \frac{d_2 - d_1}{t_2 - t_1} \][/tex]
- Between (2, [tex]\(\frac{1}{6}\)[/tex]) and (3, [tex]\(\frac{17}{48}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{17}{48} - \frac{1}{6}}{3 - 2} = \frac{\frac{17}{48} - \frac{8}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
- Between (3, [tex]\(\frac{17}{48}\)[/tex]) and (4, [tex]\(\frac{13}{24}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{13}{24} - \frac{17}{48}}{4 - 3} = \frac{\frac{26}{48} - \frac{17}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
- Between (4, [tex]\(\frac{13}{24}\)[/tex]) and (5, [tex]\(\frac{35}{48}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{35}{48} - \frac{13}{24}}{5 - 4} = \frac{\frac{35}{48} - \frac{26}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
- Between (5, [tex]\(\frac{35}{48}\)[/tex]) and (6, [tex]\(\frac{11}{12}\)[/tex]):
[tex]\[ \text{Rate of Change} = \frac{\frac{11}{12} - \frac{35}{48}}{6 - 5} = \frac{\frac{44}{48} - \frac{35}{48}}{1} = \frac{\frac{9}{48}}{1} = \frac{9}{48} = 0.1875 \][/tex]
3. Summarize the Rates of Change:
The calculated rates of change between each consecutive pair of points are:
[tex]\[ [0.1875, 0.1875, 0.1875, 0.1875] \][/tex]
Hence, the consistent rate of change of the distance Carol traveled while cross-country skiing is approximately [tex]\(0.1875\)[/tex] miles per minute.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.