Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the problem step-by-step.
### 1. Finding the linear regression model for the price-supply data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Supply (billion bushels)} & \text{Price (\$/bu)} \\ \hline 6.49 & 2.15 \\ 7.37 & 2.24 \\ 7.61 & 2.36 \\ 7.95 & 2.44 \\ 8.21 & 2.43 \\ 8.33 & 2.59 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between supply ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = 0.22
- Intercept ([tex]\( b \)[/tex]) = 0.71
Thus, the linear regression equation for the price-supply data is:
[tex]\[ y = 0.22x + 0.71 \][/tex]
### 2. Finding the linear regression model for the price-demand data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Demand (billion bushels)} & \text{Price (\$/bu)} \\ \hline 9.92 & 2.09 \\ 9.42 & 2.11 \\ 8.49 & 2.26 \\ 8.08 & 2.38 \\ 7.78 & 2.36 \\ 6.89 & 2.49 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between demand ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = -0.14
- Intercept ([tex]\( b \)[/tex]) = 3.47
Thus, the linear regression equation for the price-demand data is:
[tex]\[ y = -0.14x + 3.47 \][/tex]
### 3. Finding the equilibrium price for corn
The equilibrium price occurs where the price-supply and price-demand equations intersect.
Setting the two equations equal to each other:
[tex]\[ 0.22x + 0.71 = -0.14x + 3.47 \][/tex]
Combining like terms to solve for [tex]\( x \)[/tex]:
[tex]\[ 0.22x + 0.14x = 3.47 - 0.71 \][/tex]
[tex]\[ 0.36x = 2.76 \][/tex]
[tex]\[ x = \frac{2.76}{0.36} = 7.67 \][/tex]
Now, substituting [tex]\( x \)[/tex] back into either equation to find the equilibrium price [tex]\( y \)[/tex]:
[tex]\[ y = 0.22(7.67) + 0.71 \][/tex]
[tex]\[ y \approx 2.38 \][/tex]
So, the equilibrium price for corn is:
[tex]\[ y = \$2.38 \][/tex]
Therefore, the correct choice is:
[tex]\[ A. y = \$2.38 \][/tex]
### 1. Finding the linear regression model for the price-supply data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Supply (billion bushels)} & \text{Price (\$/bu)} \\ \hline 6.49 & 2.15 \\ 7.37 & 2.24 \\ 7.61 & 2.36 \\ 7.95 & 2.44 \\ 8.21 & 2.43 \\ 8.33 & 2.59 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between supply ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = 0.22
- Intercept ([tex]\( b \)[/tex]) = 0.71
Thus, the linear regression equation for the price-supply data is:
[tex]\[ y = 0.22x + 0.71 \][/tex]
### 2. Finding the linear regression model for the price-demand data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Demand (billion bushels)} & \text{Price (\$/bu)} \\ \hline 9.92 & 2.09 \\ 9.42 & 2.11 \\ 8.49 & 2.26 \\ 8.08 & 2.38 \\ 7.78 & 2.36 \\ 6.89 & 2.49 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between demand ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = -0.14
- Intercept ([tex]\( b \)[/tex]) = 3.47
Thus, the linear regression equation for the price-demand data is:
[tex]\[ y = -0.14x + 3.47 \][/tex]
### 3. Finding the equilibrium price for corn
The equilibrium price occurs where the price-supply and price-demand equations intersect.
Setting the two equations equal to each other:
[tex]\[ 0.22x + 0.71 = -0.14x + 3.47 \][/tex]
Combining like terms to solve for [tex]\( x \)[/tex]:
[tex]\[ 0.22x + 0.14x = 3.47 - 0.71 \][/tex]
[tex]\[ 0.36x = 2.76 \][/tex]
[tex]\[ x = \frac{2.76}{0.36} = 7.67 \][/tex]
Now, substituting [tex]\( x \)[/tex] back into either equation to find the equilibrium price [tex]\( y \)[/tex]:
[tex]\[ y = 0.22(7.67) + 0.71 \][/tex]
[tex]\[ y \approx 2.38 \][/tex]
So, the equilibrium price for corn is:
[tex]\[ y = \$2.38 \][/tex]
Therefore, the correct choice is:
[tex]\[ A. y = \$2.38 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.