At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the problem step-by-step.
### 1. Finding the linear regression model for the price-supply data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Supply (billion bushels)} & \text{Price (\$/bu)} \\ \hline 6.49 & 2.15 \\ 7.37 & 2.24 \\ 7.61 & 2.36 \\ 7.95 & 2.44 \\ 8.21 & 2.43 \\ 8.33 & 2.59 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between supply ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = 0.22
- Intercept ([tex]\( b \)[/tex]) = 0.71
Thus, the linear regression equation for the price-supply data is:
[tex]\[ y = 0.22x + 0.71 \][/tex]
### 2. Finding the linear regression model for the price-demand data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Demand (billion bushels)} & \text{Price (\$/bu)} \\ \hline 9.92 & 2.09 \\ 9.42 & 2.11 \\ 8.49 & 2.26 \\ 8.08 & 2.38 \\ 7.78 & 2.36 \\ 6.89 & 2.49 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between demand ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = -0.14
- Intercept ([tex]\( b \)[/tex]) = 3.47
Thus, the linear regression equation for the price-demand data is:
[tex]\[ y = -0.14x + 3.47 \][/tex]
### 3. Finding the equilibrium price for corn
The equilibrium price occurs where the price-supply and price-demand equations intersect.
Setting the two equations equal to each other:
[tex]\[ 0.22x + 0.71 = -0.14x + 3.47 \][/tex]
Combining like terms to solve for [tex]\( x \)[/tex]:
[tex]\[ 0.22x + 0.14x = 3.47 - 0.71 \][/tex]
[tex]\[ 0.36x = 2.76 \][/tex]
[tex]\[ x = \frac{2.76}{0.36} = 7.67 \][/tex]
Now, substituting [tex]\( x \)[/tex] back into either equation to find the equilibrium price [tex]\( y \)[/tex]:
[tex]\[ y = 0.22(7.67) + 0.71 \][/tex]
[tex]\[ y \approx 2.38 \][/tex]
So, the equilibrium price for corn is:
[tex]\[ y = \$2.38 \][/tex]
Therefore, the correct choice is:
[tex]\[ A. y = \$2.38 \][/tex]
### 1. Finding the linear regression model for the price-supply data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Supply (billion bushels)} & \text{Price (\$/bu)} \\ \hline 6.49 & 2.15 \\ 7.37 & 2.24 \\ 7.61 & 2.36 \\ 7.95 & 2.44 \\ 8.21 & 2.43 \\ 8.33 & 2.59 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between supply ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = 0.22
- Intercept ([tex]\( b \)[/tex]) = 0.71
Thus, the linear regression equation for the price-supply data is:
[tex]\[ y = 0.22x + 0.71 \][/tex]
### 2. Finding the linear regression model for the price-demand data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Demand (billion bushels)} & \text{Price (\$/bu)} \\ \hline 9.92 & 2.09 \\ 9.42 & 2.11 \\ 8.49 & 2.26 \\ 8.08 & 2.38 \\ 7.78 & 2.36 \\ 6.89 & 2.49 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between demand ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = -0.14
- Intercept ([tex]\( b \)[/tex]) = 3.47
Thus, the linear regression equation for the price-demand data is:
[tex]\[ y = -0.14x + 3.47 \][/tex]
### 3. Finding the equilibrium price for corn
The equilibrium price occurs where the price-supply and price-demand equations intersect.
Setting the two equations equal to each other:
[tex]\[ 0.22x + 0.71 = -0.14x + 3.47 \][/tex]
Combining like terms to solve for [tex]\( x \)[/tex]:
[tex]\[ 0.22x + 0.14x = 3.47 - 0.71 \][/tex]
[tex]\[ 0.36x = 2.76 \][/tex]
[tex]\[ x = \frac{2.76}{0.36} = 7.67 \][/tex]
Now, substituting [tex]\( x \)[/tex] back into either equation to find the equilibrium price [tex]\( y \)[/tex]:
[tex]\[ y = 0.22(7.67) + 0.71 \][/tex]
[tex]\[ y \approx 2.38 \][/tex]
So, the equilibrium price for corn is:
[tex]\[ y = \$2.38 \][/tex]
Therefore, the correct choice is:
[tex]\[ A. y = \$2.38 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.