Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's solve the problem step-by-step.
### 1. Finding the linear regression model for the price-supply data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Supply (billion bushels)} & \text{Price (\$/bu)} \\ \hline 6.49 & 2.15 \\ 7.37 & 2.24 \\ 7.61 & 2.36 \\ 7.95 & 2.44 \\ 8.21 & 2.43 \\ 8.33 & 2.59 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between supply ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = 0.22
- Intercept ([tex]\( b \)[/tex]) = 0.71
Thus, the linear regression equation for the price-supply data is:
[tex]\[ y = 0.22x + 0.71 \][/tex]
### 2. Finding the linear regression model for the price-demand data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Demand (billion bushels)} & \text{Price (\$/bu)} \\ \hline 9.92 & 2.09 \\ 9.42 & 2.11 \\ 8.49 & 2.26 \\ 8.08 & 2.38 \\ 7.78 & 2.36 \\ 6.89 & 2.49 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between demand ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = -0.14
- Intercept ([tex]\( b \)[/tex]) = 3.47
Thus, the linear regression equation for the price-demand data is:
[tex]\[ y = -0.14x + 3.47 \][/tex]
### 3. Finding the equilibrium price for corn
The equilibrium price occurs where the price-supply and price-demand equations intersect.
Setting the two equations equal to each other:
[tex]\[ 0.22x + 0.71 = -0.14x + 3.47 \][/tex]
Combining like terms to solve for [tex]\( x \)[/tex]:
[tex]\[ 0.22x + 0.14x = 3.47 - 0.71 \][/tex]
[tex]\[ 0.36x = 2.76 \][/tex]
[tex]\[ x = \frac{2.76}{0.36} = 7.67 \][/tex]
Now, substituting [tex]\( x \)[/tex] back into either equation to find the equilibrium price [tex]\( y \)[/tex]:
[tex]\[ y = 0.22(7.67) + 0.71 \][/tex]
[tex]\[ y \approx 2.38 \][/tex]
So, the equilibrium price for corn is:
[tex]\[ y = \$2.38 \][/tex]
Therefore, the correct choice is:
[tex]\[ A. y = \$2.38 \][/tex]
### 1. Finding the linear regression model for the price-supply data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Supply (billion bushels)} & \text{Price (\$/bu)} \\ \hline 6.49 & 2.15 \\ 7.37 & 2.24 \\ 7.61 & 2.36 \\ 7.95 & 2.44 \\ 8.21 & 2.43 \\ 8.33 & 2.59 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between supply ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = 0.22
- Intercept ([tex]\( b \)[/tex]) = 0.71
Thus, the linear regression equation for the price-supply data is:
[tex]\[ y = 0.22x + 0.71 \][/tex]
### 2. Finding the linear regression model for the price-demand data
From the given data:
[tex]\[ \begin{array}{c|c} \text{Demand (billion bushels)} & \text{Price (\$/bu)} \\ \hline 9.92 & 2.09 \\ 9.42 & 2.11 \\ 8.49 & 2.26 \\ 8.08 & 2.38 \\ 7.78 & 2.36 \\ 6.89 & 2.49 \\ \end{array} \][/tex]
Using linear regression analysis, we can determine the relationship between demand ([tex]\(x\)[/tex]) and price ([tex]\(y\)[/tex]). The relationship can be expressed in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope of the line and [tex]\( b \)[/tex] is the y-intercept.
From the analysis, we find that:
- Slope ([tex]\( m \)[/tex]) = -0.14
- Intercept ([tex]\( b \)[/tex]) = 3.47
Thus, the linear regression equation for the price-demand data is:
[tex]\[ y = -0.14x + 3.47 \][/tex]
### 3. Finding the equilibrium price for corn
The equilibrium price occurs where the price-supply and price-demand equations intersect.
Setting the two equations equal to each other:
[tex]\[ 0.22x + 0.71 = -0.14x + 3.47 \][/tex]
Combining like terms to solve for [tex]\( x \)[/tex]:
[tex]\[ 0.22x + 0.14x = 3.47 - 0.71 \][/tex]
[tex]\[ 0.36x = 2.76 \][/tex]
[tex]\[ x = \frac{2.76}{0.36} = 7.67 \][/tex]
Now, substituting [tex]\( x \)[/tex] back into either equation to find the equilibrium price [tex]\( y \)[/tex]:
[tex]\[ y = 0.22(7.67) + 0.71 \][/tex]
[tex]\[ y \approx 2.38 \][/tex]
So, the equilibrium price for corn is:
[tex]\[ y = \$2.38 \][/tex]
Therefore, the correct choice is:
[tex]\[ A. y = \$2.38 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.