At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Solid cobalt (III) chloride is produced when cobalt reacts with chlorine. Choose the balanced equation that represents this reaction.

A. [tex]\(2 Co (s) + 3 Cl_2 (s) \rightarrow 2 CoCl_3 (s)\)[/tex]

B. [tex]\(2 Co (s) + 3 Cl_2 (l) \rightarrow 2 CoCl_3 (s)\)[/tex]

C. [tex]\(Co (s) + Cl_2 (g) \rightarrow CoCl_2 (s)\)[/tex]

D. [tex]\(Co (s) + 3 Cl_2 (s) \rightarrow CoCl_3 (s)\)[/tex]

E. [tex]\(Co (s) + Cl_2 (g) \rightarrow CoCl_2 (s)\)[/tex]


Sagot :

To determine the correct balanced equation for the production of solid cobalt (III) chloride ([tex]\(CoCl_3\)[/tex]) when cobalt reacts with chlorine, we need to analyze each of the given options carefully:

1. Option A:
[tex]\[ 2 Co (s) + 3 Cl_2(s) \rightarrow 2 CoCl_3(s) \][/tex]

2. Option B:
[tex]\[ 2 Co (s) + 3 Cl_2(l) \rightarrow 2 CoCl_3(s) \][/tex]

3. Option C:
[tex]\[ Co (s) + Cl_2(0) \rightarrow CoCl_2(s) \][/tex]

4. Option D:
[tex]\[ Co (s) + 3 Cll (s) \rightarrow CoCl_3(s) \][/tex]

5. Option E:
[tex]\[ Co (s) + Cl_2(g) \rightarrow CoCl_2(s) \][/tex]

Now let's examine each option:

- Option A:
This equation is balanced and indicates the reaction between solid cobalt (s) and chlorine gas (Cl[tex]\(_2\)[/tex] in the solid state), producing solid cobalt (III) chloride (CoCl[tex]\(_3\)[/tex]). However, chlorine is typically in the gaseous state at room temperature.

- Option B:
This equation is similar to Option A but specifies chlorine in the liquid state (Cl[tex]\(_2(l)\)[/tex]), which is unusual for typical conditions, making this less likely.

- Option C:
This equation suggests cobalt reacting with an undefined form of chlorine (Cl[tex]\(_2(0)\)[/tex]), producing cobalt (II) chloride (CoCl[tex]\(_2\)[/tex]). This doesn't yield CoCl[tex]\(_3\)[/tex] as required.

- Option D:
This equation has chlorine represented incorrectly with "Cll." There's no known form of chlorine denoted this way in standard chemistry, making this incorrect.

- Option E:
This equation reacts cobalt with chlorine gas (Cl[tex]\(_2(g)\)[/tex]) to form cobalt (II) chloride (CoCl[tex]\(_2\)[/tex]), not cobalt (III) chloride (CoCl[tex]\(_3\)[/tex]).

The most accurate representation of cobalt reacting with chlorine gas to form solid cobalt (III) chloride is therefore:

[tex]\[ 2 Co (s) + 3 Cl_2(g) \rightarrow 2 CoCl_3(s) \][/tex]

This matches with Option A:
[tex]\[ 2 Co (s) + 3 Cl_2 (s) \rightarrow 2 CoCl_3 (s) \][/tex]

Thus, the correct answer is:

[tex]\[ 1 \][/tex]

This explains that Option A is indeed the correct balanced equation for the reaction to produce cobalt (III) chloride.