Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve for [tex]\(\alpha^4 + \beta^4 + \gamma^4\)[/tex], where [tex]\(\alpha, \beta, \gamma\)[/tex] are the roots of the polynomial equation [tex]\(x^3 + 2x + 5 = 0\)[/tex], let's start by using the relationships provided by Vieta's formulas for a cubic polynomial.
Given the polynomial [tex]\(x^3 + 2x + 5 = 0\)[/tex], we can identify the coefficients as follows: [tex]\(a = 1\)[/tex], [tex]\(b = 0\)[/tex], [tex]\(c = 2\)[/tex], and [tex]\(d = 5\)[/tex]. Therefore, according to Vieta’s formulas, we have:
1. [tex]\(\alpha + \beta + \gamma = 0\)[/tex],
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = 2\)[/tex],
3. [tex]\(\alpha\beta\gamma = -5\)[/tex].
Next, we need to express [tex]\(\alpha^4 + \beta^4 + \gamma^4\)[/tex] in terms of these roots. Let's begin by finding the squared roots [tex]\(\alpha^2, \beta^2, \gamma^2\)[/tex]. Using the original equation [tex]\(x^3 + 2x + 5 = 0\)[/tex]:
[tex]\[ \alpha^3 + 2\alpha + 5 = 0 \implies \alpha^3 = -2\alpha - 5, \][/tex]
[tex]\[ \beta^3 + 2\beta + 5 = 0 \implies \beta^3 = -2\beta - 5, \][/tex]
[tex]\[ \gamma^3 + 2\gamma + 5 = 0 \implies \gamma^3 = -2\gamma - 5. \][/tex]
Now, squaring [tex]\(\alpha^2\)[/tex], we have:
[tex]\[ \alpha^4 = (\alpha^2)^2 = (\alpha^3 \cdot \alpha) = (-2\alpha - 5)\alpha = -2\alpha^2 - 5\alpha, \][/tex]
[tex]\[ \beta^4 = (\beta^2)^2 = (\beta^3 \cdot \beta) = (-2\beta - 5)\beta = -2\beta^2 - 5\beta, \][/tex]
[tex]\[ \gamma^4 = (\gamma^2)^2 = (\gamma^3 \cdot \gamma) = (-2\gamma - 5)\gamma = -2\gamma^2 - 5\gamma. \][/tex]
Summing these expressions, we get:
[tex]\[ \alpha^4 + \beta^4 + \gamma^4 = -2(\alpha^2 + \beta^2 + \gamma^2) - 5(\alpha + \beta + \gamma). \][/tex]
Since [tex]\(\alpha + \beta + \gamma = 0\)[/tex], the term involving [tex]\(\alpha + \beta + \gamma\)[/tex] vanishes:
[tex]\[ \alpha^4 + \beta^4 + \gamma^4 = -2(\alpha^2 + \beta^2 + \gamma^2). \][/tex]
To find [tex]\(\alpha^2 + \beta^2 + \gamma^2\)[/tex], recall the identity for the sum of squares of the roots:
[tex]\[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha). \][/tex]
Using Vieta’s results:
[tex]\[ \alpha^2 + \beta^2 + \gamma^2 = 0^2 - 2(2) = -4. \][/tex]
Thus,
[tex]\[ \alpha^4 + \beta^4 + \gamma^4 = -2(-4) = 8. \][/tex]
Therefore, the value of [tex]\(\alpha^4 + \beta^4 + \gamma^4\)[/tex] is [tex]\(\boxed{8}\)[/tex].
Given the polynomial [tex]\(x^3 + 2x + 5 = 0\)[/tex], we can identify the coefficients as follows: [tex]\(a = 1\)[/tex], [tex]\(b = 0\)[/tex], [tex]\(c = 2\)[/tex], and [tex]\(d = 5\)[/tex]. Therefore, according to Vieta’s formulas, we have:
1. [tex]\(\alpha + \beta + \gamma = 0\)[/tex],
2. [tex]\(\alpha\beta + \beta\gamma + \gamma\alpha = 2\)[/tex],
3. [tex]\(\alpha\beta\gamma = -5\)[/tex].
Next, we need to express [tex]\(\alpha^4 + \beta^4 + \gamma^4\)[/tex] in terms of these roots. Let's begin by finding the squared roots [tex]\(\alpha^2, \beta^2, \gamma^2\)[/tex]. Using the original equation [tex]\(x^3 + 2x + 5 = 0\)[/tex]:
[tex]\[ \alpha^3 + 2\alpha + 5 = 0 \implies \alpha^3 = -2\alpha - 5, \][/tex]
[tex]\[ \beta^3 + 2\beta + 5 = 0 \implies \beta^3 = -2\beta - 5, \][/tex]
[tex]\[ \gamma^3 + 2\gamma + 5 = 0 \implies \gamma^3 = -2\gamma - 5. \][/tex]
Now, squaring [tex]\(\alpha^2\)[/tex], we have:
[tex]\[ \alpha^4 = (\alpha^2)^2 = (\alpha^3 \cdot \alpha) = (-2\alpha - 5)\alpha = -2\alpha^2 - 5\alpha, \][/tex]
[tex]\[ \beta^4 = (\beta^2)^2 = (\beta^3 \cdot \beta) = (-2\beta - 5)\beta = -2\beta^2 - 5\beta, \][/tex]
[tex]\[ \gamma^4 = (\gamma^2)^2 = (\gamma^3 \cdot \gamma) = (-2\gamma - 5)\gamma = -2\gamma^2 - 5\gamma. \][/tex]
Summing these expressions, we get:
[tex]\[ \alpha^4 + \beta^4 + \gamma^4 = -2(\alpha^2 + \beta^2 + \gamma^2) - 5(\alpha + \beta + \gamma). \][/tex]
Since [tex]\(\alpha + \beta + \gamma = 0\)[/tex], the term involving [tex]\(\alpha + \beta + \gamma\)[/tex] vanishes:
[tex]\[ \alpha^4 + \beta^4 + \gamma^4 = -2(\alpha^2 + \beta^2 + \gamma^2). \][/tex]
To find [tex]\(\alpha^2 + \beta^2 + \gamma^2\)[/tex], recall the identity for the sum of squares of the roots:
[tex]\[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha). \][/tex]
Using Vieta’s results:
[tex]\[ \alpha^2 + \beta^2 + \gamma^2 = 0^2 - 2(2) = -4. \][/tex]
Thus,
[tex]\[ \alpha^4 + \beta^4 + \gamma^4 = -2(-4) = 8. \][/tex]
Therefore, the value of [tex]\(\alpha^4 + \beta^4 + \gamma^4\)[/tex] is [tex]\(\boxed{8}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.