Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the equation of the line that passes through the points [tex]\((8, -1)\)[/tex] and [tex]\((2, -5)\)[/tex] and express it in standard form, let's follow these steps:
1. Calculate the Slope (m):
The slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((8, -1)\)[/tex] and [tex]\((2, -5)\)[/tex]:
[tex]\[ m = \frac{-5 - (-1)}{2 - 8} = \frac{-5 + 1}{2 - 8} = \frac{-4}{-6} = \frac{2}{3} \][/tex]
2. Point-Slope Form of the Line:
Using the point-slope form [tex]\(y - y_1 = m(x - x_1)\)[/tex] with [tex]\(m = \frac{2}{3}\)[/tex], [tex]\(x_1 = 8\)[/tex], and [tex]\(y_1 = -1\)[/tex]:
[tex]\[ y + 1 = \frac{2}{3}(x - 8) \][/tex]
3. Convert to Standard Form:
Standard form of a line is [tex]\(Ax + By = C\)[/tex], where [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] are integers, and [tex]\(A \geq 0\)[/tex].
Start by eliminating the fraction by multiplying every term by 3:
[tex]\[ 3(y + 1) = 2(x - 8) \][/tex]
Distribute on both sides:
[tex]\[ 3y + 3 = 2x - 16 \][/tex]
Rearrange to get the equation in the form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 2x - 3y = 19 \][/tex]
Therefore, the equation of the line in standard form is:
[tex]\[ \boxed{2x - 3y = 19} \][/tex]
The steps have been followed to ensure all calculations are shown, justifying this result.
1. Calculate the Slope (m):
The slope [tex]\(m\)[/tex] of a line through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the given points [tex]\((8, -1)\)[/tex] and [tex]\((2, -5)\)[/tex]:
[tex]\[ m = \frac{-5 - (-1)}{2 - 8} = \frac{-5 + 1}{2 - 8} = \frac{-4}{-6} = \frac{2}{3} \][/tex]
2. Point-Slope Form of the Line:
Using the point-slope form [tex]\(y - y_1 = m(x - x_1)\)[/tex] with [tex]\(m = \frac{2}{3}\)[/tex], [tex]\(x_1 = 8\)[/tex], and [tex]\(y_1 = -1\)[/tex]:
[tex]\[ y + 1 = \frac{2}{3}(x - 8) \][/tex]
3. Convert to Standard Form:
Standard form of a line is [tex]\(Ax + By = C\)[/tex], where [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(C\)[/tex] are integers, and [tex]\(A \geq 0\)[/tex].
Start by eliminating the fraction by multiplying every term by 3:
[tex]\[ 3(y + 1) = 2(x - 8) \][/tex]
Distribute on both sides:
[tex]\[ 3y + 3 = 2x - 16 \][/tex]
Rearrange to get the equation in the form [tex]\(Ax + By = C\)[/tex]:
[tex]\[ 2x - 3y = 19 \][/tex]
Therefore, the equation of the line in standard form is:
[tex]\[ \boxed{2x - 3y = 19} \][/tex]
The steps have been followed to ensure all calculations are shown, justifying this result.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.