Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To identify which products result in a difference of squares or a perfect square trinomial, we need to know a few algebraic identities:
1. Difference of Squares:
[tex]\((a + b)(a - b) = a^2 - b^2\)[/tex]
2. Perfect Square Trinomial:
[tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex] or [tex]\((a - b)^2 = a^2 - 2ab + b^2\)[/tex]
Let's analyze each product:
1. [tex]\((5x + 3)(5x - 3)\)[/tex]
- This follows the form of a difference of squares: [tex]\(a = 5x\)[/tex] and [tex]\(b = 3\)[/tex].
- [tex]\((5x + 3)(5x - 3) = (5x)^2 - 3^2 = 25x^2 - 9\)[/tex]
- This matches the difference of squares identity.
2. [tex]\((7x + 4)(7x + 4)\)[/tex]
- This follows the form of a perfect square trinomial: [tex]\(a = 7x\)[/tex] and [tex]\(b = 4\)[/tex].
- [tex]\((7x + 4)^2 = (7x)^2 + 2(7x)(4) + 4^2 = 49x^2 + 56x + 16\)[/tex]
- This matches the perfect square trinomial identity.
3. [tex]\((2x + 1)(x + 2)\)[/tex]
- This does not follow the form of either a difference of squares or a perfect square trinomial.
- Multiplying it out, [tex]\((2x + 1)(x + 2) = 2x^2 + 4x + x + 2 = 2x^2 + 5x + 2\)[/tex]
- This is neither a difference of squares nor a perfect square trinomial.
4. [tex]\((4x - 6)(x + 8)\)[/tex]
- This does not follow the form of either a difference of squares or a perfect square trinomial.
- Multiplying it out, [tex]\((4x - 6)(x + 8) = 4x^2 + 32x - 6x - 48 = 4x^2 + 26x - 48\)[/tex]
- This is neither a difference of squares nor a perfect square trinomial.
5. [tex]\((x - 9)(x - 9)\)[/tex]
- This follows the form of a perfect square trinomial: [tex]\(a = x\)[/tex] and [tex]\(b = 9\)[/tex].
- [tex]\((x - 9)^2 = x^2 - 2(x)(9) + 9^2 = x^2 - 18x + 81\)[/tex]
- This matches the perfect square trinomial identity.
6. [tex]\((-3x - 6)(-3x + 6)\)[/tex]
- This follows the form of a difference of squares: [tex]\(a = -3x\)[/tex] and [tex]\(b = 6\)[/tex].
- [tex]\((-3x - 6)(-3x + 6) = (-3x)^2 - 6^2 = 9x^2 - 36\)[/tex]
- This matches the difference of squares identity.
Based on the above calculations, the products that result in a difference of squares or a perfect square trinomial are:
- [tex]\((5x + 3)(5x - 3)\)[/tex]
- [tex]\((7x + 4)(7x + 4)\)[/tex]
- [tex]\((x - 9)(x - 9)\)[/tex]
- [tex]\((-3x - 6)(-3x + 6)\)[/tex]
1. Difference of Squares:
[tex]\((a + b)(a - b) = a^2 - b^2\)[/tex]
2. Perfect Square Trinomial:
[tex]\((a + b)^2 = a^2 + 2ab + b^2\)[/tex] or [tex]\((a - b)^2 = a^2 - 2ab + b^2\)[/tex]
Let's analyze each product:
1. [tex]\((5x + 3)(5x - 3)\)[/tex]
- This follows the form of a difference of squares: [tex]\(a = 5x\)[/tex] and [tex]\(b = 3\)[/tex].
- [tex]\((5x + 3)(5x - 3) = (5x)^2 - 3^2 = 25x^2 - 9\)[/tex]
- This matches the difference of squares identity.
2. [tex]\((7x + 4)(7x + 4)\)[/tex]
- This follows the form of a perfect square trinomial: [tex]\(a = 7x\)[/tex] and [tex]\(b = 4\)[/tex].
- [tex]\((7x + 4)^2 = (7x)^2 + 2(7x)(4) + 4^2 = 49x^2 + 56x + 16\)[/tex]
- This matches the perfect square trinomial identity.
3. [tex]\((2x + 1)(x + 2)\)[/tex]
- This does not follow the form of either a difference of squares or a perfect square trinomial.
- Multiplying it out, [tex]\((2x + 1)(x + 2) = 2x^2 + 4x + x + 2 = 2x^2 + 5x + 2\)[/tex]
- This is neither a difference of squares nor a perfect square trinomial.
4. [tex]\((4x - 6)(x + 8)\)[/tex]
- This does not follow the form of either a difference of squares or a perfect square trinomial.
- Multiplying it out, [tex]\((4x - 6)(x + 8) = 4x^2 + 32x - 6x - 48 = 4x^2 + 26x - 48\)[/tex]
- This is neither a difference of squares nor a perfect square trinomial.
5. [tex]\((x - 9)(x - 9)\)[/tex]
- This follows the form of a perfect square trinomial: [tex]\(a = x\)[/tex] and [tex]\(b = 9\)[/tex].
- [tex]\((x - 9)^2 = x^2 - 2(x)(9) + 9^2 = x^2 - 18x + 81\)[/tex]
- This matches the perfect square trinomial identity.
6. [tex]\((-3x - 6)(-3x + 6)\)[/tex]
- This follows the form of a difference of squares: [tex]\(a = -3x\)[/tex] and [tex]\(b = 6\)[/tex].
- [tex]\((-3x - 6)(-3x + 6) = (-3x)^2 - 6^2 = 9x^2 - 36\)[/tex]
- This matches the difference of squares identity.
Based on the above calculations, the products that result in a difference of squares or a perfect square trinomial are:
- [tex]\((5x + 3)(5x - 3)\)[/tex]
- [tex]\((7x + 4)(7x + 4)\)[/tex]
- [tex]\((x - 9)(x - 9)\)[/tex]
- [tex]\((-3x - 6)(-3x + 6)\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.