Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's work through the given information step-by-step and develop a clear solution:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.