Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's work through the given information step-by-step and develop a clear solution:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.