Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's work through the given information step-by-step and develop a clear solution:
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
[tex]\[ \begin{tabular}{|c|c|c|} \hline Step & Statement & Reason \\ \hline 1 & AC = AB + AB & Given \\ \hline 2 & AB + BC = AC & Segment Addition Postulate \\ \hline 3 & AB + BC = AB + AB & By substitution of AC from Step 1 in Step 2 \\ \hline 4 & BC = AB & Subtraction Property (Subtract AB from both sides of Step 3) \\ \hline \end{tabular} \][/tex]
After completing these steps, we can deduce the following:
1. We know from the given information that [tex]\( AC = AB + AB \)[/tex].
2. According to the Segment Addition Postulate, [tex]\( AB + BC = AC \)[/tex]. This means that the sum of the lengths of the segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] is equal to the length of [tex]\( AC \)[/tex].
3. By substituting [tex]\( AC \)[/tex] from Step 1 into Step 2, we get: [tex]\( AB + BC = AB + AB \)[/tex].
4. By subtracting [tex]\( AB \)[/tex] from both sides of the equation [tex]\( AB + BC = AB + AB \)[/tex], we find [tex]\( BC = AB \)[/tex].
So, we have two key conclusions:
- [tex]\( AB = BC \)[/tex] (derived using the Subtraction Property).
- From the above equality, if we substitute [tex]\( BC \)[/tex] with [tex]\( AB \)[/tex] in the initial statement [tex]\( AC = AB + AB \)[/tex], we maintain the relationship [tex]\( AC = AB + AB \)[/tex].
These relationships clarify:
- [tex]\( AB = BC \)[/tex] (segment equality).
- Since [tex]\( AC = AB + AB \)[/tex] can also be expressed as [tex]\( AC = 2AB \)[/tex] and we derived [tex]\( AB = BC \)[/tex]; hence, the length of [tex]\( AC \)[/tex] is twice the length of [tex]\( AB \)[/tex], and since [tex]\( AB = BC \)[/tex], the result [tex]\( AC = BC \)[/tex] holds naturally due to the equality [tex]\( AB = BC \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.