Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To identify which of the given reactions represents a gamma emission, we need to understand the different types of emissions:
1. Alpha Emission (α): Involves the release of an alpha particle ([tex]\(_{2}^{4}He\)[/tex]), leading to a decrease in the atomic number by 2 and the mass number by 4.
2. Beta Emission (β): Involves the transformation of a neutron into a proton with the emission of an electron ([tex]\(\beta\)[/tex]). This increases the atomic number by 1 while the mass number remains unchanged.
3. Gamma Emission (γ): Involves the emission of a gamma photon. This does not alter the atomic number or the mass number of the nucleus.
Now, let's analyze each choice:
A. [tex]\(\mathbf{_{28}^{60} Ni \rightarrow{ }_{28}^{60} Ni + \gamma}\)[/tex]
- Here, the atomic number (28) and mass number (60) of [tex]\(_{28}^{60} Ni\)[/tex] remain unchanged.
- This represents a gamma emission ([tex]\(\gamma\)[/tex]) since it only emits a gamma photon.
B. [tex]\(\mathbf{_{86}^{220} Rn \rightarrow{ }_{84}^{216} Po + { }_{2}^{4} He}\)[/tex]
- Here, [tex]\(_{86}^{220} Rn\)[/tex] transforms into [tex]\(_{84}^{216} Po\)[/tex] and an alpha particle ([tex]\(_{2}^{4} He\)[/tex]) is emitted.
- This represents an alpha emission.
C. [tex]\(\mathbf{_{89}^{228} Ac \rightarrow{ }_{90}^{228} Th + \beta}\)[/tex]
- Here, [tex]\(_{89}^{228} Ac\)[/tex] transforms into [tex]\(_{90}^{228} Th\)[/tex] with the emission of a beta particle ([tex]\(\beta\)[/tex]).
- This represents a beta emission.
D. [tex]\(\mathbf{_{83}^{212} Bi \rightarrow{ }_{84}^{212} Po + { }_{-1}^{0} e}\)[/tex]
- Here, [tex]\(_{83}^{212} Bi\)[/tex] transforms into [tex]\(_{84}^{212} Po\)[/tex] with the emission of a positron ([tex]\(_{-1}^{0} e\)[/tex]).
- This represents another type of beta emission (beta-plus emission or positron emission).
After analyzing each option, we can conclude that:
The reaction that represents a gamma emission is:
A. [tex]\(\mathbf{_{28}^{60} Ni \rightarrow{ }_{28}^{60} Ni + \gamma}\)[/tex]
1. Alpha Emission (α): Involves the release of an alpha particle ([tex]\(_{2}^{4}He\)[/tex]), leading to a decrease in the atomic number by 2 and the mass number by 4.
2. Beta Emission (β): Involves the transformation of a neutron into a proton with the emission of an electron ([tex]\(\beta\)[/tex]). This increases the atomic number by 1 while the mass number remains unchanged.
3. Gamma Emission (γ): Involves the emission of a gamma photon. This does not alter the atomic number or the mass number of the nucleus.
Now, let's analyze each choice:
A. [tex]\(\mathbf{_{28}^{60} Ni \rightarrow{ }_{28}^{60} Ni + \gamma}\)[/tex]
- Here, the atomic number (28) and mass number (60) of [tex]\(_{28}^{60} Ni\)[/tex] remain unchanged.
- This represents a gamma emission ([tex]\(\gamma\)[/tex]) since it only emits a gamma photon.
B. [tex]\(\mathbf{_{86}^{220} Rn \rightarrow{ }_{84}^{216} Po + { }_{2}^{4} He}\)[/tex]
- Here, [tex]\(_{86}^{220} Rn\)[/tex] transforms into [tex]\(_{84}^{216} Po\)[/tex] and an alpha particle ([tex]\(_{2}^{4} He\)[/tex]) is emitted.
- This represents an alpha emission.
C. [tex]\(\mathbf{_{89}^{228} Ac \rightarrow{ }_{90}^{228} Th + \beta}\)[/tex]
- Here, [tex]\(_{89}^{228} Ac\)[/tex] transforms into [tex]\(_{90}^{228} Th\)[/tex] with the emission of a beta particle ([tex]\(\beta\)[/tex]).
- This represents a beta emission.
D. [tex]\(\mathbf{_{83}^{212} Bi \rightarrow{ }_{84}^{212} Po + { }_{-1}^{0} e}\)[/tex]
- Here, [tex]\(_{83}^{212} Bi\)[/tex] transforms into [tex]\(_{84}^{212} Po\)[/tex] with the emission of a positron ([tex]\(_{-1}^{0} e\)[/tex]).
- This represents another type of beta emission (beta-plus emission or positron emission).
After analyzing each option, we can conclude that:
The reaction that represents a gamma emission is:
A. [tex]\(\mathbf{_{28}^{60} Ni \rightarrow{ }_{28}^{60} Ni + \gamma}\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.