Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Write a two-column proof to prove that the distance from the restaurant to the movie theater is the same as the distance from the coffee shop to the estate office.

Given: [tex]\( AB = DE \)[/tex], [tex]\( BC = CD = EF \)[/tex]

Prove: [tex]\( AC = DF \)[/tex]

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Statement} & \text{Reason} \\
\hline
1. \, AB = DE, \, BC = CD = EF & \text{Given} \\
\hline
2. \, AB + BC = AC & \text{Segment Addition Postulate} \\
\hline
3. \, DE + EF = DF & \text{Segment Addition Postulate} \\
\hline
4. \, AB + BC = DE + EF & \text{Transitive Property of Equality} \\
\hline
5. \, AC = DF & \text{Substitution Property} \\
\hline
\end{array}
\][/tex]


Sagot :

To prove that the distance from the restaurant to the movie theater [tex]\( AC \)[/tex] is the same as the distance from the coffee shop to the estate office [tex]\( DF \)[/tex], we will use a two-column proof format. Here's the step-by-step proof:

[tex]\[ \begin{array}{|c|c|} \hline \text{Statement} & \text{Reason} \\ \hline AB = DE, BC = CD = EF & \text{Given} \\ AB + BC = AC & \text{Segment Addition Postulate} \\ DE + EF = DF & \text{Segment Addition Postulate} \\ AB + BC = DE + EF & \text{Substitution Property of Equality} \\ AC = DF & \text{Transitive Property of Equality} \\ \hline \end{array} \][/tex]

## Detailed Explanation:

1. Given: [tex]\( AB = DE \)[/tex] and [tex]\( BC = CD = EF \)[/tex]
- These are the initial conditions provided in the problem.

2. Segment Addition Postulate: [tex]\( AB + BC = AC \)[/tex]
- According to the Segment Addition Postulate, the sum of the lengths of segments [tex]\( AB \)[/tex] and [tex]\( BC \)[/tex] equals the length of segment [tex]\( AC \)[/tex].

3. Segment Addition Postulate: [tex]\( DE + EF = DF \)[/tex]
- Similarly, according to the Segment Addition Postulate, the sum of the lengths of segments [tex]\( DE \)[/tex] and [tex]\( EF \)[/tex] equals the length of segment [tex]\( DF \)[/tex].

4. Substitution Property of Equality: [tex]\( AB + BC = DE + EF \)[/tex]
- Since [tex]\( AB \)[/tex] is equal to [tex]\( DE \)[/tex] and [tex]\( BC \)[/tex] is equal to [tex]\( EF \)[/tex] (and [tex]\( CD \)[/tex]), we can substitute [tex]\( DE \)[/tex] for [tex]\( AB \)[/tex] and [tex]\( EF \)[/tex] for [tex]\( BC \)[/tex] in the equation from Step 2, giving us [tex]\( DE + EF \)[/tex] as the sum.

5. Transitive Property of Equality: [tex]\( AC = DF \)[/tex]
- By the Transitive Property of Equality, if [tex]\( AB + BC = AC \)[/tex] and [tex]\( DE + EF = DF \)[/tex] are both equal to each other, then [tex]\( AC \)[/tex] must be equal to [tex]\( DF \)[/tex].

Thus, we have proven that the distance from the restaurant to the movie theater [tex]\( AC \)[/tex] is equal to the distance from the coffee shop to the estate office [tex]\( DF \)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.