Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Of course! Let's go through the solution step-by-step.
### 1. Finding the slope [tex]\( m \)[/tex] of the tangent line at the point [tex]\((4, 5)\)[/tex]
Given the function:
[tex]\[ y = 3x^2 - 11x + 1 \][/tex]
To find the slope of the tangent line at a specific point, we need to calculate the derivative of the function with respect to [tex]\( x \)[/tex].
The derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(3x^2 - 11x + 1) \][/tex]
Using standard derivative rules:
[tex]\[ \frac{dy}{dx} = 6x - 11 \][/tex]
Next, we evaluate this derivative at the given point [tex]\( x = 4 \)[/tex]:
[tex]\[ m = 6(4) - 11 \][/tex]
[tex]\[ m = 24 - 11 \][/tex]
[tex]\[ m = 13 \][/tex]
So, the slope [tex]\( m \)[/tex] of the tangent line at the point [tex]\((4, 5)\)[/tex] is 13.
### 2. Finding the equation of the tangent line at the point [tex]\((4, 5)\)[/tex]
The equation of a line in point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is the point [tex]\((4, 5)\)[/tex], and [tex]\( m = 13 \)[/tex]. Plugging in these values, we get:
[tex]\[ y - 5 = 13(x - 4) \][/tex]
To find the equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]), we'll simplify the above equation:
[tex]\[ y - 5 = 13x - 52 \][/tex]
Adding 5 to both sides:
[tex]\[ y = 13x - 52 + 5 \][/tex]
[tex]\[ y = 13x - 47 \][/tex]
So, the equation of the tangent line at the point [tex]\((4, 5)\)[/tex] is:
[tex]\[ y = 13x - 47 \][/tex]
### Summary
- The slope of the tangent line at the point [tex]\((4, 5)\)[/tex] is [tex]\( m = 13 \)[/tex].
- The equation of the tangent line at the point [tex]\((4, 5)\)[/tex] is [tex]\( y = 13x - 47 \)[/tex].
### 1. Finding the slope [tex]\( m \)[/tex] of the tangent line at the point [tex]\((4, 5)\)[/tex]
Given the function:
[tex]\[ y = 3x^2 - 11x + 1 \][/tex]
To find the slope of the tangent line at a specific point, we need to calculate the derivative of the function with respect to [tex]\( x \)[/tex].
The derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(3x^2 - 11x + 1) \][/tex]
Using standard derivative rules:
[tex]\[ \frac{dy}{dx} = 6x - 11 \][/tex]
Next, we evaluate this derivative at the given point [tex]\( x = 4 \)[/tex]:
[tex]\[ m = 6(4) - 11 \][/tex]
[tex]\[ m = 24 - 11 \][/tex]
[tex]\[ m = 13 \][/tex]
So, the slope [tex]\( m \)[/tex] of the tangent line at the point [tex]\((4, 5)\)[/tex] is 13.
### 2. Finding the equation of the tangent line at the point [tex]\((4, 5)\)[/tex]
The equation of a line in point-slope form is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Here, [tex]\((x_1, y_1)\)[/tex] is the point [tex]\((4, 5)\)[/tex], and [tex]\( m = 13 \)[/tex]. Plugging in these values, we get:
[tex]\[ y - 5 = 13(x - 4) \][/tex]
To find the equation in slope-intercept form ([tex]\( y = mx + b \)[/tex]), we'll simplify the above equation:
[tex]\[ y - 5 = 13x - 52 \][/tex]
Adding 5 to both sides:
[tex]\[ y = 13x - 52 + 5 \][/tex]
[tex]\[ y = 13x - 47 \][/tex]
So, the equation of the tangent line at the point [tex]\((4, 5)\)[/tex] is:
[tex]\[ y = 13x - 47 \][/tex]
### Summary
- The slope of the tangent line at the point [tex]\((4, 5)\)[/tex] is [tex]\( m = 13 \)[/tex].
- The equation of the tangent line at the point [tex]\((4, 5)\)[/tex] is [tex]\( y = 13x - 47 \)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.