Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the problem, we need to calculate three things: the lateral area of the cylinder, the area of the two bases together, and the total surface area of the cylinder.
1. Lateral Area of the Cylinder:
The lateral area [tex]\(A_{\text{lateral}}\)[/tex] of a cylinder is given by the formula:
[tex]\[ A_{\text{lateral}} = 2 \pi r h \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(h\)[/tex] is the height. In this case, the height [tex]\(h\)[/tex] is given as [tex]\(2r\)[/tex].
Substituting [tex]\(h = 2r\)[/tex] into the formula:
[tex]\[ A_{\text{lateral}} = 2 \pi r (2r) = 4 \pi r^2 \][/tex]
Hence, the lateral area of the cylinder is:
[tex]\[ 4 \pi r^2 \text{ square inches} \][/tex]
2. Area of the Two Bases Together:
Each base of the cylinder is a circle with area [tex]\(A_{\text{base}}\)[/tex] given by the formula:
[tex]\[ A_{\text{base}} = \pi r^2 \][/tex]
Since the cylinder has two bases, the total area of the two bases together is:
[tex]\[ A_{\text{bases}} = 2 \times \pi r^2 = 2 \pi r^2 \][/tex]
Hence, the area of the two bases together is:
[tex]\[ 2 \pi r^2 \text{ square inches} \][/tex]
3. Total Surface Area of the Cylinder:
The total surface area [tex]\(A_{\text{total}}\)[/tex] is the sum of the lateral area and the area of the two bases:
[tex]\[ A_{\text{total}} = A_{\text{lateral}} + A_{\text{bases}} = 4 \pi r^2 + 2 \pi r^2 = 6 \pi r^2 \][/tex]
Hence, the total surface area of the cylinder is:
[tex]\[ 6 \pi r^2 \text{ square inches} \][/tex]
Putting it all together:
- The lateral area of the cylinder is [tex]\( \boxed{4} r^2 \pi\)[/tex] square inches.
- The area of the two bases together is [tex]\( \boxed{2} r^2 \pi\)[/tex] square inches.
- The total surface area of the cylinder is [tex]\( \boxed{6} r^2 \pi\)[/tex] square inches.
1. Lateral Area of the Cylinder:
The lateral area [tex]\(A_{\text{lateral}}\)[/tex] of a cylinder is given by the formula:
[tex]\[ A_{\text{lateral}} = 2 \pi r h \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(h\)[/tex] is the height. In this case, the height [tex]\(h\)[/tex] is given as [tex]\(2r\)[/tex].
Substituting [tex]\(h = 2r\)[/tex] into the formula:
[tex]\[ A_{\text{lateral}} = 2 \pi r (2r) = 4 \pi r^2 \][/tex]
Hence, the lateral area of the cylinder is:
[tex]\[ 4 \pi r^2 \text{ square inches} \][/tex]
2. Area of the Two Bases Together:
Each base of the cylinder is a circle with area [tex]\(A_{\text{base}}\)[/tex] given by the formula:
[tex]\[ A_{\text{base}} = \pi r^2 \][/tex]
Since the cylinder has two bases, the total area of the two bases together is:
[tex]\[ A_{\text{bases}} = 2 \times \pi r^2 = 2 \pi r^2 \][/tex]
Hence, the area of the two bases together is:
[tex]\[ 2 \pi r^2 \text{ square inches} \][/tex]
3. Total Surface Area of the Cylinder:
The total surface area [tex]\(A_{\text{total}}\)[/tex] is the sum of the lateral area and the area of the two bases:
[tex]\[ A_{\text{total}} = A_{\text{lateral}} + A_{\text{bases}} = 4 \pi r^2 + 2 \pi r^2 = 6 \pi r^2 \][/tex]
Hence, the total surface area of the cylinder is:
[tex]\[ 6 \pi r^2 \text{ square inches} \][/tex]
Putting it all together:
- The lateral area of the cylinder is [tex]\( \boxed{4} r^2 \pi\)[/tex] square inches.
- The area of the two bases together is [tex]\( \boxed{2} r^2 \pi\)[/tex] square inches.
- The total surface area of the cylinder is [tex]\( \boxed{6} r^2 \pi\)[/tex] square inches.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.