Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Create an inequality that represents the verbal description below:

The product of ten and a number is greater than the difference of four times the number and two.

A. [tex]\(10x \ \textgreater \ 2 - 4x\)[/tex]
B. [tex]\(10 + x \ \textgreater \ 2 - 4x\)[/tex]
C. [tex]\(10 + x \ \textgreater \ 4x - 2\)[/tex]
D. [tex]\(10x \ \textgreater \ 4x - 2\)[/tex]


Sagot :

To create an inequality that accurately represents the given verbal description, let's break down the description step-by-step:

1. Verbal Description: "The product of ten and a number is greater than the difference of four times the number and two."

2. Identify the number:
- Let [tex]\( x \)[/tex] represent the number.

3. Translate each part of the description into algebraic expressions:
- "The product of ten and a number" translates to [tex]\( 10x \)[/tex].
- "The difference of four times the number and two" translates to [tex]\( 4x - 2 \)[/tex].

4. Set up the inequality:
- According to the description, the product mentioned [tex]\( 10x \)[/tex] is greater than the difference [tex]\( 4x - 2 \)[/tex].
- Therefore, the inequality is: [tex]\( 10x > 4x - 2 \)[/tex].

Among the given options, the inequality that matches this description is:

- Option D: [tex]\( 10x > 4x - 2 \)[/tex]

Thus, the correct inequality is:
[tex]\[ 10x > 4x - 2 \][/tex]

Next, if we simplify this inequality:

1. Subtract [tex]\( 4x \)[/tex] from both sides to isolate the variable term:
[tex]\[ 10x - 4x > -2 \][/tex]
[tex]\[ 6x > -2 \][/tex]

2. You may stop here as this already shows the inequality in a simpler form. For further numerical steps, you might want to solve for [tex]\( x \)[/tex], but stopping at the simplified form is usually sufficiently indicative.

The correct inequality representing the verbal description is:
[tex]\[ 10x > 4x - 2 \][/tex]