At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation that models the height of the basketball, [tex]\( H \)[/tex], after [tex]\( b \)[/tex] bounces given that the height decreases exponentially by 27.8% each time, we start by understanding the relationship between the initial height and the percentage decrease.
1. Initial Height: The basketball is dropped from an initial height of 6 feet.
2. Percentage Decrease: The height of the basketball bounce decreases by 27.8% after each bounce.
To determine the height after each bounce, first, consider the remaining percentage of the height after each bounce. This can be calculated as:
[tex]\[ \text{Remaining Percentage} = 100\% - 27.8\% = 72.2\% \][/tex]
Next, convert this percentage to a decimal for calculation:
[tex]\[ \text{Remaining Percentage in Decimal} = \frac{72.2}{100} = 0.722 \][/tex]
Now, we can model the height after [tex]\( b \)[/tex] bounces with an exponential decay formula. If the initial height is 6 feet, and with each bounce the height is multiplied by 0.722, the height [tex]\( H \)[/tex] after [tex]\( b \)[/tex] bounces is given by:
[tex]\[ H = 6 \times (0.722)^b \][/tex]
This equation demonstrates that after each bounce, the height is 72.2% of the height of the previous bounce.
Therefore, among the given options, the correct model for the height of the basketball after [tex]\( b \)[/tex] bounces is:
[tex]\[ \text{Option A: } H = 6(0.722)^b \][/tex]
1. Initial Height: The basketball is dropped from an initial height of 6 feet.
2. Percentage Decrease: The height of the basketball bounce decreases by 27.8% after each bounce.
To determine the height after each bounce, first, consider the remaining percentage of the height after each bounce. This can be calculated as:
[tex]\[ \text{Remaining Percentage} = 100\% - 27.8\% = 72.2\% \][/tex]
Next, convert this percentage to a decimal for calculation:
[tex]\[ \text{Remaining Percentage in Decimal} = \frac{72.2}{100} = 0.722 \][/tex]
Now, we can model the height after [tex]\( b \)[/tex] bounces with an exponential decay formula. If the initial height is 6 feet, and with each bounce the height is multiplied by 0.722, the height [tex]\( H \)[/tex] after [tex]\( b \)[/tex] bounces is given by:
[tex]\[ H = 6 \times (0.722)^b \][/tex]
This equation demonstrates that after each bounce, the height is 72.2% of the height of the previous bounce.
Therefore, among the given options, the correct model for the height of the basketball after [tex]\( b \)[/tex] bounces is:
[tex]\[ \text{Option A: } H = 6(0.722)^b \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.