Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the equation that models the height of the basketball, [tex]\( H \)[/tex], after [tex]\( b \)[/tex] bounces given that the height decreases exponentially by 27.8% each time, we start by understanding the relationship between the initial height and the percentage decrease.
1. Initial Height: The basketball is dropped from an initial height of 6 feet.
2. Percentage Decrease: The height of the basketball bounce decreases by 27.8% after each bounce.
To determine the height after each bounce, first, consider the remaining percentage of the height after each bounce. This can be calculated as:
[tex]\[ \text{Remaining Percentage} = 100\% - 27.8\% = 72.2\% \][/tex]
Next, convert this percentage to a decimal for calculation:
[tex]\[ \text{Remaining Percentage in Decimal} = \frac{72.2}{100} = 0.722 \][/tex]
Now, we can model the height after [tex]\( b \)[/tex] bounces with an exponential decay formula. If the initial height is 6 feet, and with each bounce the height is multiplied by 0.722, the height [tex]\( H \)[/tex] after [tex]\( b \)[/tex] bounces is given by:
[tex]\[ H = 6 \times (0.722)^b \][/tex]
This equation demonstrates that after each bounce, the height is 72.2% of the height of the previous bounce.
Therefore, among the given options, the correct model for the height of the basketball after [tex]\( b \)[/tex] bounces is:
[tex]\[ \text{Option A: } H = 6(0.722)^b \][/tex]
1. Initial Height: The basketball is dropped from an initial height of 6 feet.
2. Percentage Decrease: The height of the basketball bounce decreases by 27.8% after each bounce.
To determine the height after each bounce, first, consider the remaining percentage of the height after each bounce. This can be calculated as:
[tex]\[ \text{Remaining Percentage} = 100\% - 27.8\% = 72.2\% \][/tex]
Next, convert this percentage to a decimal for calculation:
[tex]\[ \text{Remaining Percentage in Decimal} = \frac{72.2}{100} = 0.722 \][/tex]
Now, we can model the height after [tex]\( b \)[/tex] bounces with an exponential decay formula. If the initial height is 6 feet, and with each bounce the height is multiplied by 0.722, the height [tex]\( H \)[/tex] after [tex]\( b \)[/tex] bounces is given by:
[tex]\[ H = 6 \times (0.722)^b \][/tex]
This equation demonstrates that after each bounce, the height is 72.2% of the height of the previous bounce.
Therefore, among the given options, the correct model for the height of the basketball after [tex]\( b \)[/tex] bounces is:
[tex]\[ \text{Option A: } H = 6(0.722)^b \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.