Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine how many times larger the volume of the large sphere is in comparison to the volume of the small sphere, let's go through the problem step by step.
1. Volume of a Sphere Formula:
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
where [tex]\( r \)[/tex] is the radius of the sphere.
2. Volume of the Small Sphere:
Let [tex]\( r \)[/tex] be the radius of the small sphere. The volume of this small sphere ([tex]\( V_{\text{small}} \)[/tex]) is:
[tex]\[ V_{\text{small}} = \frac{4}{3} \pi r^3 \][/tex]
3. Volume of the Large Sphere:
The radius of the large sphere is three times the radius of the small sphere. Therefore, the radius of the large sphere is [tex]\( 3r \)[/tex]. The volume of the large sphere ([tex]\( V_{\text{large}} \)[/tex]) is:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (3r)^3 \][/tex]
Simplifying [tex]\( (3r)^3 \)[/tex]:
[tex]\[ (3r)^3 = 27r^3 \][/tex]
So the volume of the large sphere becomes:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (27r^3) \][/tex]
[tex]\[ V_{\text{large}} = 27 \left( \frac{4}{3} \pi r^3 \right) \][/tex]
[tex]\[ V_{\text{large}} = 27 V_{\text{small}} \][/tex]
4. Ratio of Volumes:
To find how many times the volume of the large sphere is larger than the volume of the small sphere, we compute the ratio [tex]\( \frac{V_{\text{large}}}{V_{\text{small}}} \)[/tex]:
[tex]\[ \frac{V_{\text{large}}}{V_{\text{small}}} = \frac{27 V_{\text{small}}}{V_{\text{small}}} = 27 \][/tex]
Thus, the volume of the large sphere is 27 times larger than the volume of the small sphere.
Answer:
[tex]\[ \boxed{27} \][/tex]
1. Volume of a Sphere Formula:
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
where [tex]\( r \)[/tex] is the radius of the sphere.
2. Volume of the Small Sphere:
Let [tex]\( r \)[/tex] be the radius of the small sphere. The volume of this small sphere ([tex]\( V_{\text{small}} \)[/tex]) is:
[tex]\[ V_{\text{small}} = \frac{4}{3} \pi r^3 \][/tex]
3. Volume of the Large Sphere:
The radius of the large sphere is three times the radius of the small sphere. Therefore, the radius of the large sphere is [tex]\( 3r \)[/tex]. The volume of the large sphere ([tex]\( V_{\text{large}} \)[/tex]) is:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (3r)^3 \][/tex]
Simplifying [tex]\( (3r)^3 \)[/tex]:
[tex]\[ (3r)^3 = 27r^3 \][/tex]
So the volume of the large sphere becomes:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (27r^3) \][/tex]
[tex]\[ V_{\text{large}} = 27 \left( \frac{4}{3} \pi r^3 \right) \][/tex]
[tex]\[ V_{\text{large}} = 27 V_{\text{small}} \][/tex]
4. Ratio of Volumes:
To find how many times the volume of the large sphere is larger than the volume of the small sphere, we compute the ratio [tex]\( \frac{V_{\text{large}}}{V_{\text{small}}} \)[/tex]:
[tex]\[ \frac{V_{\text{large}}}{V_{\text{small}}} = \frac{27 V_{\text{small}}}{V_{\text{small}}} = 27 \][/tex]
Thus, the volume of the large sphere is 27 times larger than the volume of the small sphere.
Answer:
[tex]\[ \boxed{27} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.