Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To rationalize the denominator of the given expression [tex]\(\frac{\sqrt{5}}{3 \sqrt{3}}\)[/tex], follow these steps:
1. Identify the denominator: The denominator is [tex]\(3 \sqrt{3}\)[/tex].
2. Multiply the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]: This is done to eliminate the square root in the denominator.
[tex]\[ \frac{\sqrt{5}}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \][/tex]
3. Perform the multiplication: Multiply both the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \frac{\sqrt{5} \cdot \sqrt{3}}{3 \sqrt{3} \cdot \sqrt{3}} \][/tex]
4. Simplify the expressions:
- The numerator becomes [tex]\(\sqrt{5} \cdot \sqrt{3} = \sqrt{5 \cdot 3} = \sqrt{15}\)[/tex].
- The denominator becomes [tex]\(3 \sqrt{3} \cdot \sqrt{3} = 3 \cdot (\sqrt{3})^2 = 3 \cdot 3 = 9\)[/tex].
Thus, the fraction simplifies to:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
Therefore, the expression with a rationalized denominator is:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
1. Identify the denominator: The denominator is [tex]\(3 \sqrt{3}\)[/tex].
2. Multiply the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]: This is done to eliminate the square root in the denominator.
[tex]\[ \frac{\sqrt{5}}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \][/tex]
3. Perform the multiplication: Multiply both the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \frac{\sqrt{5} \cdot \sqrt{3}}{3 \sqrt{3} \cdot \sqrt{3}} \][/tex]
4. Simplify the expressions:
- The numerator becomes [tex]\(\sqrt{5} \cdot \sqrt{3} = \sqrt{5 \cdot 3} = \sqrt{15}\)[/tex].
- The denominator becomes [tex]\(3 \sqrt{3} \cdot \sqrt{3} = 3 \cdot (\sqrt{3})^2 = 3 \cdot 3 = 9\)[/tex].
Thus, the fraction simplifies to:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
Therefore, the expression with a rationalized denominator is:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.