Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To rationalize the denominator of the given expression [tex]\(\frac{\sqrt{5}}{3 \sqrt{3}}\)[/tex], follow these steps:
1. Identify the denominator: The denominator is [tex]\(3 \sqrt{3}\)[/tex].
2. Multiply the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]: This is done to eliminate the square root in the denominator.
[tex]\[ \frac{\sqrt{5}}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \][/tex]
3. Perform the multiplication: Multiply both the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \frac{\sqrt{5} \cdot \sqrt{3}}{3 \sqrt{3} \cdot \sqrt{3}} \][/tex]
4. Simplify the expressions:
- The numerator becomes [tex]\(\sqrt{5} \cdot \sqrt{3} = \sqrt{5 \cdot 3} = \sqrt{15}\)[/tex].
- The denominator becomes [tex]\(3 \sqrt{3} \cdot \sqrt{3} = 3 \cdot (\sqrt{3})^2 = 3 \cdot 3 = 9\)[/tex].
Thus, the fraction simplifies to:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
Therefore, the expression with a rationalized denominator is:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
1. Identify the denominator: The denominator is [tex]\(3 \sqrt{3}\)[/tex].
2. Multiply the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]: This is done to eliminate the square root in the denominator.
[tex]\[ \frac{\sqrt{5}}{3 \sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \][/tex]
3. Perform the multiplication: Multiply both the numerator and the denominator by [tex]\(\sqrt{3}\)[/tex]:
[tex]\[ \frac{\sqrt{5} \cdot \sqrt{3}}{3 \sqrt{3} \cdot \sqrt{3}} \][/tex]
4. Simplify the expressions:
- The numerator becomes [tex]\(\sqrt{5} \cdot \sqrt{3} = \sqrt{5 \cdot 3} = \sqrt{15}\)[/tex].
- The denominator becomes [tex]\(3 \sqrt{3} \cdot \sqrt{3} = 3 \cdot (\sqrt{3})^2 = 3 \cdot 3 = 9\)[/tex].
Thus, the fraction simplifies to:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
Therefore, the expression with a rationalized denominator is:
[tex]\[ \frac{\sqrt{15}}{9} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.