At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the given logarithmic equation step by step:
[tex]\[ \log \left(x^2 - 5\right) - \log x = \log 4 \][/tex]
Step 1: Use the properties of logarithms to combine the logarithmic expressions on the left side of the equation
We can use the logarithmic property [tex]\(\log a - \log b = \log \left(\frac{a}{b}\right)\)[/tex]:
[tex]\[ \log \left(\frac{x^2 - 5}{x}\right) = \log 4 \][/tex]
Step 2: Since the logarithmic functions on both sides of the equation are equal, their arguments must be equal
[tex]\[ \frac{x^2 - 5}{x} = 4 \][/tex]
Step 3: Solve the resulting algebraic equation
Multiply both sides of the equation by [tex]\(x\)[/tex] to eliminate the fraction:
[tex]\[ x^2 - 5 = 4x \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 4x - 5 = 0 \][/tex]
Step 4: Solve the quadratic equation
We can factor the quadratic equation:
[tex]\[ x^2 - 4x - 5 = (x - 5)(x + 1) = 0 \][/tex]
Set each factor equal to zero to find the solutions:
[tex]\[ x - 5 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
This gives us:
[tex]\[ x = 5 \quad \text{or} \quad x = -1 \][/tex]
Step 5: Verify the solutions in the context of the original logarithmic equation
Substitute [tex]\(x = 5\)[/tex] back into the original equation to check for validity:
[tex]\[ \log \left(5^2 - 5\right) - \log 5 = \log 4 \][/tex]
[tex]\[ \log \left(25 - 5\right) - \log 5 = \log 4 \][/tex]
[tex]\[ \log 20 - \log 5 = \log 4 \][/tex]
[tex]\[ \log \left(\frac{20}{5}\right) = \log 4 \][/tex]
[tex]\[ \log 4 = \log 4 \quad \text{(True)} \][/tex]
Substitute [tex]\(x = -1\)[/tex] back into the original equation to check for validity:
[tex]\[ \log \left((-1)^2 - 5\right) - \log (-1) = \log 4 \][/tex]
[tex]\[ \log \left(1 - 5\right) - \log (-1) = \log 4 \][/tex]
[tex]\[ \log(-4) - \log(-1) = \log 4 \][/tex]
Notice that [tex]\(\log(-4)\)[/tex] and [tex]\(\log(-1)\)[/tex] are undefined in the real number system because the logarithm of a negative number is not defined for real numbers.
Therefore, the solution [tex]\(x = -1\)[/tex] is extraneous and not valid.
Conclusion:
The only valid solution to the equation [tex]\(\log \left(x^2 - 5\right) - \log x = \log 4\)[/tex] is
[tex]\[ x = 5 \][/tex]
[tex]\[ \log \left(x^2 - 5\right) - \log x = \log 4 \][/tex]
Step 1: Use the properties of logarithms to combine the logarithmic expressions on the left side of the equation
We can use the logarithmic property [tex]\(\log a - \log b = \log \left(\frac{a}{b}\right)\)[/tex]:
[tex]\[ \log \left(\frac{x^2 - 5}{x}\right) = \log 4 \][/tex]
Step 2: Since the logarithmic functions on both sides of the equation are equal, their arguments must be equal
[tex]\[ \frac{x^2 - 5}{x} = 4 \][/tex]
Step 3: Solve the resulting algebraic equation
Multiply both sides of the equation by [tex]\(x\)[/tex] to eliminate the fraction:
[tex]\[ x^2 - 5 = 4x \][/tex]
Rearrange the equation to set it to zero:
[tex]\[ x^2 - 4x - 5 = 0 \][/tex]
Step 4: Solve the quadratic equation
We can factor the quadratic equation:
[tex]\[ x^2 - 4x - 5 = (x - 5)(x + 1) = 0 \][/tex]
Set each factor equal to zero to find the solutions:
[tex]\[ x - 5 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]
This gives us:
[tex]\[ x = 5 \quad \text{or} \quad x = -1 \][/tex]
Step 5: Verify the solutions in the context of the original logarithmic equation
Substitute [tex]\(x = 5\)[/tex] back into the original equation to check for validity:
[tex]\[ \log \left(5^2 - 5\right) - \log 5 = \log 4 \][/tex]
[tex]\[ \log \left(25 - 5\right) - \log 5 = \log 4 \][/tex]
[tex]\[ \log 20 - \log 5 = \log 4 \][/tex]
[tex]\[ \log \left(\frac{20}{5}\right) = \log 4 \][/tex]
[tex]\[ \log 4 = \log 4 \quad \text{(True)} \][/tex]
Substitute [tex]\(x = -1\)[/tex] back into the original equation to check for validity:
[tex]\[ \log \left((-1)^2 - 5\right) - \log (-1) = \log 4 \][/tex]
[tex]\[ \log \left(1 - 5\right) - \log (-1) = \log 4 \][/tex]
[tex]\[ \log(-4) - \log(-1) = \log 4 \][/tex]
Notice that [tex]\(\log(-4)\)[/tex] and [tex]\(\log(-1)\)[/tex] are undefined in the real number system because the logarithm of a negative number is not defined for real numbers.
Therefore, the solution [tex]\(x = -1\)[/tex] is extraneous and not valid.
Conclusion:
The only valid solution to the equation [tex]\(\log \left(x^2 - 5\right) - \log x = \log 4\)[/tex] is
[tex]\[ x = 5 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.