Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine how many grams of nitrogen ([tex]\( \text{N}_2 \)[/tex]) are required to produce 100.0 liters of ammonia ([tex]\( \text{NH}_3 \)[/tex]) at standard temperature and pressure (STP), we can follow these steps:
### Step 1: Identify the Molar Volume at STP
At STP, one mole of any ideal gas occupies 22.4 liters. Thus, we can use this value to find the number of moles of [tex]\( \text{NH}_3 \)[/tex].
### Step 2: Determine the Moles of [tex]\( \text{NH}_3 \)[/tex]
Given 100.0 liters of [tex]\( \text{NH}_3 \)[/tex] at STP, we can calculate the moles of [tex]\( \text{NH}_3 \)[/tex]:
[tex]\[ \text{moles of } \text{NH}_3 = \frac{\text{volume of } \text{NH}_3}{\text{molar volume at STP}} = \frac{100.0 \, \text{L}}{22.4 \, \text{L/mol}} \approx 4.464 \, \text{moles} \][/tex]
### Step 3: Use Stoichiometry of the Reaction
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) \][/tex]
From the equation, we see that 1 mole of [tex]\( \text{N}_2 \)[/tex] produces 2 moles of [tex]\( \text{NH}_3 \)[/tex]. Therefore, we need:
[tex]\[ \text{moles of } \text{N}_2 = \frac{\text{moles of } \text{NH}_3}{2} = \frac{4.464}{2} \approx 2.232 \, \text{moles} \][/tex]
### Step 4: Calculate the Mass of [tex]\( \text{N}_2 \)[/tex]
We know the molar mass of [tex]\( \text{N}_2 \)[/tex] is 28.0 grams per mole. Using this, we can calculate the mass of [tex]\( \text{N}_2 \)[/tex] required:
[tex]\[ \text{mass of } \text{N}_2 = \text{moles of } \text{N}_2 \times \text{molar mass of } \text{N}_2 = 2.232 \, \text{moles} \times 28.0 \, \text{g/mol} = 62.5 \, \text{g} \][/tex]
### Conclusion
The number of grams of nitrogen required to produce 100.0 liters of ammonia at STP is:
[tex]\[ 62.5 \, \text{grams} \][/tex]
Thus, the correct answer is:
[tex]\[ 62.5 \, \text{g} \][/tex]
### Step 1: Identify the Molar Volume at STP
At STP, one mole of any ideal gas occupies 22.4 liters. Thus, we can use this value to find the number of moles of [tex]\( \text{NH}_3 \)[/tex].
### Step 2: Determine the Moles of [tex]\( \text{NH}_3 \)[/tex]
Given 100.0 liters of [tex]\( \text{NH}_3 \)[/tex] at STP, we can calculate the moles of [tex]\( \text{NH}_3 \)[/tex]:
[tex]\[ \text{moles of } \text{NH}_3 = \frac{\text{volume of } \text{NH}_3}{\text{molar volume at STP}} = \frac{100.0 \, \text{L}}{22.4 \, \text{L/mol}} \approx 4.464 \, \text{moles} \][/tex]
### Step 3: Use Stoichiometry of the Reaction
The balanced chemical equation for the reaction is:
[tex]\[ \text{N}_2(g) + 3 \text{H}_2(g) \rightarrow 2 \text{NH}_3(g) \][/tex]
From the equation, we see that 1 mole of [tex]\( \text{N}_2 \)[/tex] produces 2 moles of [tex]\( \text{NH}_3 \)[/tex]. Therefore, we need:
[tex]\[ \text{moles of } \text{N}_2 = \frac{\text{moles of } \text{NH}_3}{2} = \frac{4.464}{2} \approx 2.232 \, \text{moles} \][/tex]
### Step 4: Calculate the Mass of [tex]\( \text{N}_2 \)[/tex]
We know the molar mass of [tex]\( \text{N}_2 \)[/tex] is 28.0 grams per mole. Using this, we can calculate the mass of [tex]\( \text{N}_2 \)[/tex] required:
[tex]\[ \text{mass of } \text{N}_2 = \text{moles of } \text{N}_2 \times \text{molar mass of } \text{N}_2 = 2.232 \, \text{moles} \times 28.0 \, \text{g/mol} = 62.5 \, \text{g} \][/tex]
### Conclusion
The number of grams of nitrogen required to produce 100.0 liters of ammonia at STP is:
[tex]\[ 62.5 \, \text{grams} \][/tex]
Thus, the correct answer is:
[tex]\[ 62.5 \, \text{g} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.