Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
It seems there might be a misunderstanding in the interpretation of the problem statement. From the information provided, we are given a center at (1, -2, 4) and a radius of 3. These values are more consistent with the parameters for defining a sphere rather than a plane.
To find the equation of the sphere with center [tex]\((1, -2, 4)\)[/tex] and radius [tex]\(3\)[/tex], we follow these steps:
1. Identify the formula for the equation of a sphere:
The general equation for a sphere centered at [tex]\((X_c, Y_c, Z_c)\)[/tex] with radius [tex]\(R\)[/tex] is given by:
[tex]\[ (x - X_c)^2 + (y - Y_c)^2 + (z - Z_c)^2 = R^2 \][/tex]
2. Substitute the given center coordinates and radius into the formula:
- Center [tex]\((X_c, Y_c, Z_c) = (1, -2, 4)\)[/tex]
- Radius [tex]\(R = 3\)[/tex]
Substituting these values into the sphere equation we get:
[tex]\[ (x - 1)^2 + (y - (-2))^2 + (z - 4)^2 = 3^2 \][/tex]
3. Simplify the radius squared:
[tex]\[ 3^2 = 9 \][/tex]
4. Write the final equation:
Therefore, the equation of the sphere is:
[tex]\[ (x - 1)^2 + (y + 2)^2 + (z - 4)^2 = 9 \][/tex]
Thus, the equation of the sphere with center at [tex]\((1, -2, 4)\)[/tex] and radius [tex]\(3\)[/tex] is:
[tex]\[ (x - 1)^2 + (y + 2)^2 + (z - 4)^2 = 9 \][/tex]
To find the equation of the sphere with center [tex]\((1, -2, 4)\)[/tex] and radius [tex]\(3\)[/tex], we follow these steps:
1. Identify the formula for the equation of a sphere:
The general equation for a sphere centered at [tex]\((X_c, Y_c, Z_c)\)[/tex] with radius [tex]\(R\)[/tex] is given by:
[tex]\[ (x - X_c)^2 + (y - Y_c)^2 + (z - Z_c)^2 = R^2 \][/tex]
2. Substitute the given center coordinates and radius into the formula:
- Center [tex]\((X_c, Y_c, Z_c) = (1, -2, 4)\)[/tex]
- Radius [tex]\(R = 3\)[/tex]
Substituting these values into the sphere equation we get:
[tex]\[ (x - 1)^2 + (y - (-2))^2 + (z - 4)^2 = 3^2 \][/tex]
3. Simplify the radius squared:
[tex]\[ 3^2 = 9 \][/tex]
4. Write the final equation:
Therefore, the equation of the sphere is:
[tex]\[ (x - 1)^2 + (y + 2)^2 + (z - 4)^2 = 9 \][/tex]
Thus, the equation of the sphere with center at [tex]\((1, -2, 4)\)[/tex] and radius [tex]\(3\)[/tex] is:
[tex]\[ (x - 1)^2 + (y + 2)^2 + (z - 4)^2 = 9 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.