Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's start with the given formula:
[tex]\[ V=\left(\frac{a x^2 y}{w-y}\right)^{1 / 3} \][/tex]
We want to make [tex]\( f \)[/tex] the subject of this formula (i.e., isolate [tex]\( \frac{a x^2 y}{w-y} \)[/tex]).
### Step 1: Cube Both Sides
First, to eliminate the cube root, we cube both sides of the equation. This gives us:
[tex]\[ V^3 = \left(\frac{a x^2 y}{w-y}\right) \][/tex]
### Step 2: Isolate the Term
Next, we need to isolate the term [tex]\( \frac{a x^2 y}{w-y} \)[/tex]. We do this by manipulating the equation:
[tex]\[ V^3 = \frac{a x^2 y}{ w - y } \][/tex]
Let's multiply both sides of the equation by [tex]\( (w - y) \)[/tex] to get rid of the denominator on the right-hand side:
[tex]\[ V^3 (w - y) = a x^2 y \][/tex]
### Step 3: Make [tex]\(\frac{a x^2 y}{w - y}\)[/tex] the Subject
Finally, to solve for [tex]\( \frac{a x^2 y}{w - y} \)[/tex], we divide both sides by [tex]\( y \)[/tex] to isolate the term:
[tex]\[ \frac{a x^2 y}{w - y} = V^3 \left(\frac{w - y}{y}\right) \][/tex]
So the isolated expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ V^3 \left(\frac{w - y}{y}\right) \][/tex]
In conclusion, the expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ \boxed{V^3 \frac{w - y}{y}} \][/tex]
[tex]\[ V=\left(\frac{a x^2 y}{w-y}\right)^{1 / 3} \][/tex]
We want to make [tex]\( f \)[/tex] the subject of this formula (i.e., isolate [tex]\( \frac{a x^2 y}{w-y} \)[/tex]).
### Step 1: Cube Both Sides
First, to eliminate the cube root, we cube both sides of the equation. This gives us:
[tex]\[ V^3 = \left(\frac{a x^2 y}{w-y}\right) \][/tex]
### Step 2: Isolate the Term
Next, we need to isolate the term [tex]\( \frac{a x^2 y}{w-y} \)[/tex]. We do this by manipulating the equation:
[tex]\[ V^3 = \frac{a x^2 y}{ w - y } \][/tex]
Let's multiply both sides of the equation by [tex]\( (w - y) \)[/tex] to get rid of the denominator on the right-hand side:
[tex]\[ V^3 (w - y) = a x^2 y \][/tex]
### Step 3: Make [tex]\(\frac{a x^2 y}{w - y}\)[/tex] the Subject
Finally, to solve for [tex]\( \frac{a x^2 y}{w - y} \)[/tex], we divide both sides by [tex]\( y \)[/tex] to isolate the term:
[tex]\[ \frac{a x^2 y}{w - y} = V^3 \left(\frac{w - y}{y}\right) \][/tex]
So the isolated expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ V^3 \left(\frac{w - y}{y}\right) \][/tex]
In conclusion, the expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ \boxed{V^3 \frac{w - y}{y}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.