At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Make [tex]\( f \)[/tex] the subject of the formula:

[tex]\[ V = \left(\frac{a x^2 y}{w-y}\right)^{1 / 3} \][/tex]


Sagot :

Let's start with the given formula:

[tex]\[ V=\left(\frac{a x^2 y}{w-y}\right)^{1 / 3} \][/tex]

We want to make [tex]\( f \)[/tex] the subject of this formula (i.e., isolate [tex]\( \frac{a x^2 y}{w-y} \)[/tex]).

### Step 1: Cube Both Sides

First, to eliminate the cube root, we cube both sides of the equation. This gives us:

[tex]\[ V^3 = \left(\frac{a x^2 y}{w-y}\right) \][/tex]

### Step 2: Isolate the Term

Next, we need to isolate the term [tex]\( \frac{a x^2 y}{w-y} \)[/tex]. We do this by manipulating the equation:

[tex]\[ V^3 = \frac{a x^2 y}{ w - y } \][/tex]

Let's multiply both sides of the equation by [tex]\( (w - y) \)[/tex] to get rid of the denominator on the right-hand side:

[tex]\[ V^3 (w - y) = a x^2 y \][/tex]

### Step 3: Make [tex]\(\frac{a x^2 y}{w - y}\)[/tex] the Subject

Finally, to solve for [tex]\( \frac{a x^2 y}{w - y} \)[/tex], we divide both sides by [tex]\( y \)[/tex] to isolate the term:

[tex]\[ \frac{a x^2 y}{w - y} = V^3 \left(\frac{w - y}{y}\right) \][/tex]

So the isolated expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:

[tex]\[ V^3 \left(\frac{w - y}{y}\right) \][/tex]

In conclusion, the expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:

[tex]\[ \boxed{V^3 \frac{w - y}{y}} \][/tex]