At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's start with the given formula:
[tex]\[ V=\left(\frac{a x^2 y}{w-y}\right)^{1 / 3} \][/tex]
We want to make [tex]\( f \)[/tex] the subject of this formula (i.e., isolate [tex]\( \frac{a x^2 y}{w-y} \)[/tex]).
### Step 1: Cube Both Sides
First, to eliminate the cube root, we cube both sides of the equation. This gives us:
[tex]\[ V^3 = \left(\frac{a x^2 y}{w-y}\right) \][/tex]
### Step 2: Isolate the Term
Next, we need to isolate the term [tex]\( \frac{a x^2 y}{w-y} \)[/tex]. We do this by manipulating the equation:
[tex]\[ V^3 = \frac{a x^2 y}{ w - y } \][/tex]
Let's multiply both sides of the equation by [tex]\( (w - y) \)[/tex] to get rid of the denominator on the right-hand side:
[tex]\[ V^3 (w - y) = a x^2 y \][/tex]
### Step 3: Make [tex]\(\frac{a x^2 y}{w - y}\)[/tex] the Subject
Finally, to solve for [tex]\( \frac{a x^2 y}{w - y} \)[/tex], we divide both sides by [tex]\( y \)[/tex] to isolate the term:
[tex]\[ \frac{a x^2 y}{w - y} = V^3 \left(\frac{w - y}{y}\right) \][/tex]
So the isolated expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ V^3 \left(\frac{w - y}{y}\right) \][/tex]
In conclusion, the expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ \boxed{V^3 \frac{w - y}{y}} \][/tex]
[tex]\[ V=\left(\frac{a x^2 y}{w-y}\right)^{1 / 3} \][/tex]
We want to make [tex]\( f \)[/tex] the subject of this formula (i.e., isolate [tex]\( \frac{a x^2 y}{w-y} \)[/tex]).
### Step 1: Cube Both Sides
First, to eliminate the cube root, we cube both sides of the equation. This gives us:
[tex]\[ V^3 = \left(\frac{a x^2 y}{w-y}\right) \][/tex]
### Step 2: Isolate the Term
Next, we need to isolate the term [tex]\( \frac{a x^2 y}{w-y} \)[/tex]. We do this by manipulating the equation:
[tex]\[ V^3 = \frac{a x^2 y}{ w - y } \][/tex]
Let's multiply both sides of the equation by [tex]\( (w - y) \)[/tex] to get rid of the denominator on the right-hand side:
[tex]\[ V^3 (w - y) = a x^2 y \][/tex]
### Step 3: Make [tex]\(\frac{a x^2 y}{w - y}\)[/tex] the Subject
Finally, to solve for [tex]\( \frac{a x^2 y}{w - y} \)[/tex], we divide both sides by [tex]\( y \)[/tex] to isolate the term:
[tex]\[ \frac{a x^2 y}{w - y} = V^3 \left(\frac{w - y}{y}\right) \][/tex]
So the isolated expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ V^3 \left(\frac{w - y}{y}\right) \][/tex]
In conclusion, the expression for [tex]\( \frac{a x^2 y}{w - y} \)[/tex] is:
[tex]\[ \boxed{V^3 \frac{w - y}{y}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.