Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the given series [tex]\(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots\)[/tex] has a limit and to find the limit if it exists, we need to analyze the series.
1. Identify the Series:
The series [tex]\(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots\)[/tex] is a geometric series. A geometric series is one where each term after the first is found by multiplying the previous term by a constant called the common ratio.
2. Determine the First Term and Common Ratio:
- The first term ([tex]\(a\)[/tex]) of this series is 1.
- The common ratio ([tex]\(r\)[/tex]) is the ratio of any term to the previous term. Here, [tex]\(r = \frac{1}{3}\)[/tex].
3. Check for Convergence:
A geometric series converges if the absolute value of the common ratio is less than 1 ([tex]\(|r| < 1\)[/tex]). In this case, [tex]\(|r| = \left| \frac{1}{3} \right| = \frac{1}{3} < 1\)[/tex].
4. Calculate the Sum of the Infinite Geometric Series:
For a convergent geometric series, the sum [tex]\(S\)[/tex] of the infinite series can be found using the formula:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
5. Substitute the Values:
- First term [tex]\(a = 1\)[/tex]
- Common ratio [tex]\(r = \frac{1}{3}\)[/tex]
Substituting these values into the formula gives:
[tex]\[ S = \frac{1}{1 - \frac{1}{3}} \][/tex]
6. Simplify the Expression:
[tex]\[ S = \frac{1}{\frac{3}{3} - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = 1 \cdot \frac{3}{2} = \frac{3}{2} \][/tex]
7. Conclusion:
The series [tex]\(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots\)[/tex] converges and its sum is:
[tex]\[ \frac{3}{2} \approx 1.5 \][/tex]
Which, when calculated, results approximately in:
[tex]\[ 1.4999999999999998 \][/tex]
Therefore, the given series has a limit and the limit is approximately [tex]\(1.4999999999999998\)[/tex].
1. Identify the Series:
The series [tex]\(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots\)[/tex] is a geometric series. A geometric series is one where each term after the first is found by multiplying the previous term by a constant called the common ratio.
2. Determine the First Term and Common Ratio:
- The first term ([tex]\(a\)[/tex]) of this series is 1.
- The common ratio ([tex]\(r\)[/tex]) is the ratio of any term to the previous term. Here, [tex]\(r = \frac{1}{3}\)[/tex].
3. Check for Convergence:
A geometric series converges if the absolute value of the common ratio is less than 1 ([tex]\(|r| < 1\)[/tex]). In this case, [tex]\(|r| = \left| \frac{1}{3} \right| = \frac{1}{3} < 1\)[/tex].
4. Calculate the Sum of the Infinite Geometric Series:
For a convergent geometric series, the sum [tex]\(S\)[/tex] of the infinite series can be found using the formula:
[tex]\[ S = \frac{a}{1 - r} \][/tex]
where [tex]\(a\)[/tex] is the first term and [tex]\(r\)[/tex] is the common ratio.
5. Substitute the Values:
- First term [tex]\(a = 1\)[/tex]
- Common ratio [tex]\(r = \frac{1}{3}\)[/tex]
Substituting these values into the formula gives:
[tex]\[ S = \frac{1}{1 - \frac{1}{3}} \][/tex]
6. Simplify the Expression:
[tex]\[ S = \frac{1}{\frac{3}{3} - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = 1 \cdot \frac{3}{2} = \frac{3}{2} \][/tex]
7. Conclusion:
The series [tex]\(1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \ldots\)[/tex] converges and its sum is:
[tex]\[ \frac{3}{2} \approx 1.5 \][/tex]
Which, when calculated, results approximately in:
[tex]\[ 1.4999999999999998 \][/tex]
Therefore, the given series has a limit and the limit is approximately [tex]\(1.4999999999999998\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.