At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the domain of the function [tex]\( f(x) = \sqrt{(x + 4)(6 - x)} + \frac{2}{\sqrt{|x| - 3}} \)[/tex], we need to find all [tex]\( x \)[/tex]-values for which the expression under the square root and the denominator in the fraction are valid and defined. Here’s the step-by-step process:
### 1. Condition from the First Square Root:
The first part of the function is [tex]\( \sqrt{(x + 4)(6 - x)} \)[/tex]. For the square root to be defined, the expression inside it must be non-negative:
[tex]\[ (x + 4)(6 - x) \geq 0 \][/tex]
To solve [tex]\( (x + 4)(6 - x) \geq 0 \)[/tex], we find the roots of the quadratic expression.
The roots are:
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
[tex]\[ 6 - x = 0 \implies x = 6 \][/tex]
Now, we consider the intervals determined by these roots: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 6) \)[/tex], and [tex]\( (6, \infty) \)[/tex].
We check the sign of [tex]\( (x + 4)(6 - x) \)[/tex] in each of these intervals:
- For [tex]\( x \)[/tex] in [tex]\( (-\infty, -4) \)[/tex]: Both [tex]\( x + 4 \)[/tex] and [tex]\( 6 - x \)[/tex] are negative, so the product is positive.
- For [tex]\( x \)[/tex] in [tex]\( (-4, 6) \)[/tex]: The sign of [tex]\( (x + 4) \)[/tex] and [tex]\( (6 - x) \)[/tex] will both make one positive and one negative, so the product is negative.
- For [tex]\( x \)[/tex] in [tex]\( (6, \infty) \)[/tex]: Both [tex]\( x + 4 \)[/tex] and [tex]\( 6 - x \)[/tex] are positive, so the product is positive.
Therefore, [tex]\( (x + 4)(6 - x) \geq 0 \)[/tex] has solutions [tex]\( x \in [-4, 6] \)[/tex].
### 2. Condition from the Second Square Root and Fraction:
The second part of the function is [tex]\( \frac{2}{\sqrt{|x| - 3}} \)[/tex]. For this expression to be defined, the denominator must not be zero and the radicand (the term inside the square root) must be positive:
[tex]\[ |x| - 3 > 0 \][/tex]
This simplifies to:
[tex]\[ |x| > 3 \][/tex]
Which implies:
[tex]\[ x > 3 \quad \text{or} \quad x < -3 \][/tex]
### 3. Combined Conditions:
We must find the intersection of the intervals from both conditions:
1. [tex]\( x \in [-4, 6] \)[/tex]
2. [tex]\( x > 3 \)[/tex] or [tex]\( x < -3 \)[/tex]
Combining these:
- From [tex]\( x \in [-4, 6] \)[/tex] and [tex]\( x > 3 \)[/tex], we get [tex]\( 3 < x \leq 6 \)[/tex].
- From [tex]\( x \in [-4, 6] \)[/tex] and [tex]\( x < -3 \)[/tex], we get [tex]\( -4 \leq x < -3 \)[/tex].
Thus, the domain is:
[tex]\[ [-4, -3) \cup (3, 6] \][/tex]
### Conclusion:
The domain of the function is [tex]\( [-4, -3) \cup (3, 6] \)[/tex]. This corresponds to option (3).
[tex]\[ \boxed{[-4, -3) \cup (3, 6]} \][/tex]
### 1. Condition from the First Square Root:
The first part of the function is [tex]\( \sqrt{(x + 4)(6 - x)} \)[/tex]. For the square root to be defined, the expression inside it must be non-negative:
[tex]\[ (x + 4)(6 - x) \geq 0 \][/tex]
To solve [tex]\( (x + 4)(6 - x) \geq 0 \)[/tex], we find the roots of the quadratic expression.
The roots are:
[tex]\[ x + 4 = 0 \implies x = -4 \][/tex]
[tex]\[ 6 - x = 0 \implies x = 6 \][/tex]
Now, we consider the intervals determined by these roots: [tex]\( (-\infty, -4) \)[/tex], [tex]\( (-4, 6) \)[/tex], and [tex]\( (6, \infty) \)[/tex].
We check the sign of [tex]\( (x + 4)(6 - x) \)[/tex] in each of these intervals:
- For [tex]\( x \)[/tex] in [tex]\( (-\infty, -4) \)[/tex]: Both [tex]\( x + 4 \)[/tex] and [tex]\( 6 - x \)[/tex] are negative, so the product is positive.
- For [tex]\( x \)[/tex] in [tex]\( (-4, 6) \)[/tex]: The sign of [tex]\( (x + 4) \)[/tex] and [tex]\( (6 - x) \)[/tex] will both make one positive and one negative, so the product is negative.
- For [tex]\( x \)[/tex] in [tex]\( (6, \infty) \)[/tex]: Both [tex]\( x + 4 \)[/tex] and [tex]\( 6 - x \)[/tex] are positive, so the product is positive.
Therefore, [tex]\( (x + 4)(6 - x) \geq 0 \)[/tex] has solutions [tex]\( x \in [-4, 6] \)[/tex].
### 2. Condition from the Second Square Root and Fraction:
The second part of the function is [tex]\( \frac{2}{\sqrt{|x| - 3}} \)[/tex]. For this expression to be defined, the denominator must not be zero and the radicand (the term inside the square root) must be positive:
[tex]\[ |x| - 3 > 0 \][/tex]
This simplifies to:
[tex]\[ |x| > 3 \][/tex]
Which implies:
[tex]\[ x > 3 \quad \text{or} \quad x < -3 \][/tex]
### 3. Combined Conditions:
We must find the intersection of the intervals from both conditions:
1. [tex]\( x \in [-4, 6] \)[/tex]
2. [tex]\( x > 3 \)[/tex] or [tex]\( x < -3 \)[/tex]
Combining these:
- From [tex]\( x \in [-4, 6] \)[/tex] and [tex]\( x > 3 \)[/tex], we get [tex]\( 3 < x \leq 6 \)[/tex].
- From [tex]\( x \in [-4, 6] \)[/tex] and [tex]\( x < -3 \)[/tex], we get [tex]\( -4 \leq x < -3 \)[/tex].
Thus, the domain is:
[tex]\[ [-4, -3) \cup (3, 6] \][/tex]
### Conclusion:
The domain of the function is [tex]\( [-4, -3) \cup (3, 6] \)[/tex]. This corresponds to option (3).
[tex]\[ \boxed{[-4, -3) \cup (3, 6]} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.