Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the upper and lower bounds for the height of the tree, we'll use the given measurements and the concept of significant figures and angles.
Given:
- Distance to the base of the tree (ground to tree): \( d = 12 \) m (measured to the nearest metre).
- Angle of elevation to the top of the tree: \( \theta = 40^\circ \) (measured to the nearest degree).
### Step 1: Upper Bound for Tree Height
The upper bound for the tree height \( h \) occurs when we consider the maximum possible height given the measured distance \( d \) and angle \( \theta \).
1. **Convert angle to radians for accuracy:**
\[ \theta_{\text{rad}} = \frac{40 \pi}{180} = \frac{2}{9} \pi \]
2. **Calculate the upper bound for height \( h \):**
\[ h_{\text{upper}} = d \cdot \tan(\theta_{\text{rad}} + \frac{\pi}{2}) \]
Here, \( \tan(\theta_{\text{rad}} + \frac{\pi}{2}) \) gives us the maximum possible height.
Plugging in the values:
\[ h_{\text{upper}} = 12 \cdot \tan\left(\frac{2}{9} \pi + \frac{\pi}{2}\right) \]
Calculate \( \tan\left(\frac{2}{9} \pi + \frac{\pi}{2}\right) \):
\[ \tan\left(\frac{2}{9} \pi + \frac{\pi}{2}\right) = \tan\left(\frac{5}{9} \pi\right) \]
Using the tangent function:
\[ \tan\left(\frac{5}{9} \pi\right) \approx \tan\left(\frac{\pi}{2} - \frac{4}{9} \pi\right) = \cot\left(\frac{4}{9} \pi\right) \]
Calculate the cotangent value and then multiply by 12 meters
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.