Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex].

Sagot :

To find the equation of a line passing through the point [tex]\((-1,2)\)[/tex] and parallel to the line [tex]\(y = x + 4\)[/tex], follow these steps:

1. Identify the slope of the given line:
The equation given is [tex]\(y = x + 4\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Here, [tex]\(m = 1\)[/tex].

2. Use the slope of the parallel line:
Since parallel lines have the same slope, the slope of the line we need to find will also be [tex]\(1\)[/tex].

3. Apply the point-slope form of the line equation:
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope. Here, [tex]\((x_1, y_1) = (-1, 2)\)[/tex] and [tex]\(m = 1\)[/tex].

4. Substitute the given point and the slope into the point-slope form:
Substituting [tex]\((-1, 2)\)[/tex] and [tex]\(m = 1\)[/tex] into the equation:
[tex]\[ y - 2 = 1(x - (-1)) \][/tex]

5. Simplify the equation:
[tex]\[ y - 2 = 1(x + 1) \][/tex]
[tex]\[ y - 2 = x + 1 \][/tex]
Add 2 to both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = x + 1 + 2 \][/tex]
[tex]\[ y = x + 3 \][/tex]

Hence, the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex] is:
[tex]\[ y = x + 3 \][/tex]