Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the maximum force that can be safely applied to a rectangular floor tile given its dimensions and the maximum pressure it can sustain, let's follow these detailed steps:
### Step 1: Understand the given data
- The dimensions of the rectangular tile are given as:
- Length: [tex]\(1.6\)[/tex] meters
- Width: [tex]\(2.3\)[/tex] meters
- The maximum pressure the tile can sustain is given as:
- [tex]\(200 \, \text{Newtons per square meter} \, (N/m^2)\)[/tex]
### Step 2: Calculate the area of the tile
The area of a rectangle is given by the product of its length and width. Therefore, the area [tex]\(A\)[/tex] of the tile is:
[tex]\[ A = \text{length} \times \text{width} = 1.6 \, \text{m} \times 2.3 \, \text{m} \][/tex]
### Solution:
[tex]\[ A = 3.68 \, \text{square meters (} m^2 \text{)} \][/tex]
### Step 3: Calculate the maximum force
We know the relationship between pressure, force, and area is given by the formula:
[tex]\[ P = \frac{F}{A} \][/tex]
Where:
- [tex]\(P\)[/tex] is the pressure
- [tex]\(F\)[/tex] is the force
- [tex]\(A\)[/tex] is the area
Rearranging this formula to solve for force [tex]\(F\)[/tex], we get:
[tex]\[ F = P \times A \][/tex]
### Step 4: Substitute the known values into the formula
The maximum pressure [tex]\(P\)[/tex] is [tex]\(200 \, N/m^2\)[/tex], and the area [tex]\(A\)[/tex] is [tex]\(3.68 \, m^2\)[/tex]:
[tex]\[ F = 200 \, N/m^2 \times 3.68 \, m^2 \][/tex]
### Solution:
[tex]\[ F = 736 \, \text{Newtons (N)} \][/tex]
### Final Answer:
The maximum force that can be safely applied to the tile is:
[tex]\[ \boxed{736 \text{ Newtons (N)}} \][/tex]
### Step 1: Understand the given data
- The dimensions of the rectangular tile are given as:
- Length: [tex]\(1.6\)[/tex] meters
- Width: [tex]\(2.3\)[/tex] meters
- The maximum pressure the tile can sustain is given as:
- [tex]\(200 \, \text{Newtons per square meter} \, (N/m^2)\)[/tex]
### Step 2: Calculate the area of the tile
The area of a rectangle is given by the product of its length and width. Therefore, the area [tex]\(A\)[/tex] of the tile is:
[tex]\[ A = \text{length} \times \text{width} = 1.6 \, \text{m} \times 2.3 \, \text{m} \][/tex]
### Solution:
[tex]\[ A = 3.68 \, \text{square meters (} m^2 \text{)} \][/tex]
### Step 3: Calculate the maximum force
We know the relationship between pressure, force, and area is given by the formula:
[tex]\[ P = \frac{F}{A} \][/tex]
Where:
- [tex]\(P\)[/tex] is the pressure
- [tex]\(F\)[/tex] is the force
- [tex]\(A\)[/tex] is the area
Rearranging this formula to solve for force [tex]\(F\)[/tex], we get:
[tex]\[ F = P \times A \][/tex]
### Step 4: Substitute the known values into the formula
The maximum pressure [tex]\(P\)[/tex] is [tex]\(200 \, N/m^2\)[/tex], and the area [tex]\(A\)[/tex] is [tex]\(3.68 \, m^2\)[/tex]:
[tex]\[ F = 200 \, N/m^2 \times 3.68 \, m^2 \][/tex]
### Solution:
[tex]\[ F = 736 \, \text{Newtons (N)} \][/tex]
### Final Answer:
The maximum force that can be safely applied to the tile is:
[tex]\[ \boxed{736 \text{ Newtons (N)}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.