Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the maximum force that can be safely applied to a rectangular floor tile given its dimensions and the maximum pressure it can sustain, let's follow these detailed steps:
### Step 1: Understand the given data
- The dimensions of the rectangular tile are given as:
- Length: [tex]\(1.6\)[/tex] meters
- Width: [tex]\(2.3\)[/tex] meters
- The maximum pressure the tile can sustain is given as:
- [tex]\(200 \, \text{Newtons per square meter} \, (N/m^2)\)[/tex]
### Step 2: Calculate the area of the tile
The area of a rectangle is given by the product of its length and width. Therefore, the area [tex]\(A\)[/tex] of the tile is:
[tex]\[ A = \text{length} \times \text{width} = 1.6 \, \text{m} \times 2.3 \, \text{m} \][/tex]
### Solution:
[tex]\[ A = 3.68 \, \text{square meters (} m^2 \text{)} \][/tex]
### Step 3: Calculate the maximum force
We know the relationship between pressure, force, and area is given by the formula:
[tex]\[ P = \frac{F}{A} \][/tex]
Where:
- [tex]\(P\)[/tex] is the pressure
- [tex]\(F\)[/tex] is the force
- [tex]\(A\)[/tex] is the area
Rearranging this formula to solve for force [tex]\(F\)[/tex], we get:
[tex]\[ F = P \times A \][/tex]
### Step 4: Substitute the known values into the formula
The maximum pressure [tex]\(P\)[/tex] is [tex]\(200 \, N/m^2\)[/tex], and the area [tex]\(A\)[/tex] is [tex]\(3.68 \, m^2\)[/tex]:
[tex]\[ F = 200 \, N/m^2 \times 3.68 \, m^2 \][/tex]
### Solution:
[tex]\[ F = 736 \, \text{Newtons (N)} \][/tex]
### Final Answer:
The maximum force that can be safely applied to the tile is:
[tex]\[ \boxed{736 \text{ Newtons (N)}} \][/tex]
### Step 1: Understand the given data
- The dimensions of the rectangular tile are given as:
- Length: [tex]\(1.6\)[/tex] meters
- Width: [tex]\(2.3\)[/tex] meters
- The maximum pressure the tile can sustain is given as:
- [tex]\(200 \, \text{Newtons per square meter} \, (N/m^2)\)[/tex]
### Step 2: Calculate the area of the tile
The area of a rectangle is given by the product of its length and width. Therefore, the area [tex]\(A\)[/tex] of the tile is:
[tex]\[ A = \text{length} \times \text{width} = 1.6 \, \text{m} \times 2.3 \, \text{m} \][/tex]
### Solution:
[tex]\[ A = 3.68 \, \text{square meters (} m^2 \text{)} \][/tex]
### Step 3: Calculate the maximum force
We know the relationship between pressure, force, and area is given by the formula:
[tex]\[ P = \frac{F}{A} \][/tex]
Where:
- [tex]\(P\)[/tex] is the pressure
- [tex]\(F\)[/tex] is the force
- [tex]\(A\)[/tex] is the area
Rearranging this formula to solve for force [tex]\(F\)[/tex], we get:
[tex]\[ F = P \times A \][/tex]
### Step 4: Substitute the known values into the formula
The maximum pressure [tex]\(P\)[/tex] is [tex]\(200 \, N/m^2\)[/tex], and the area [tex]\(A\)[/tex] is [tex]\(3.68 \, m^2\)[/tex]:
[tex]\[ F = 200 \, N/m^2 \times 3.68 \, m^2 \][/tex]
### Solution:
[tex]\[ F = 736 \, \text{Newtons (N)} \][/tex]
### Final Answer:
The maximum force that can be safely applied to the tile is:
[tex]\[ \boxed{736 \text{ Newtons (N)}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.