Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let's find the limit:
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} \][/tex]
### Step 1: Substitute [tex]\(x = 1\)[/tex]
First, we should substitute [tex]\(x = 1\)[/tex] into the expression to see if it yields a determinate form:
[tex]\[ \frac{1^2 + 1}{1^2 - 3(1) + 2} = \frac{1 + 1}{1 - 3 + 2} = \frac{2}{0} \][/tex]
Since the denominator becomes 0, the expression is undefined at [tex]\( x = 1 \)[/tex]. Hence, we must find the limit using other methods, since directly substituting gives an indeterminate form of [tex]\(\frac{2}{0}\)[/tex].
### Step 2: Factor the Denominator
Factor the denominator [tex]\(x^2 - 3x + 2\)[/tex]:
[tex]\[ x^2 - 3x + 2 = (x - 1)(x - 2) \][/tex]
Now rewrite the original function with the factored form:
[tex]\[ \frac{x^2 + 1}{x^2 - 3x + 2} = \frac{x^2 + 1}{(x - 1)(x - 2)} \][/tex]
### Step 3: Analyze the Behavior Around [tex]\( x = 1 \)[/tex]
Since the denominator becomes zero at [tex]\( x = 1 \)[/tex], let's analyze the behavior of the function as [tex]\( x \)[/tex] approaches 1 from the left ([tex]\( x \to 1^- \)[/tex]) and from the right ([tex]\( x \to 1^+ \)[/tex]).
#### As [tex]\( x \to 1^- \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly negative (since [tex]\( x < 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 1 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be positive but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{+0} \)[/tex] which indicates [tex]\( +\infty \)[/tex].
#### As [tex]\( x \to 1^+ \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly positive (since [tex]\( x > 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 2 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be negative but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{-0} \)[/tex] which indicates [tex]\( -\infty \)[/tex].
### Conclusion:
Since as [tex]\( x \)[/tex] approaches 1 from the left, the function approaches [tex]\( +\infty \)[/tex], and as [tex]\( x \)[/tex] approaches 1 from the right, the function approaches [tex]\( -\infty \)[/tex], the overall limit does not exist in the standard sense. However, in one-sided limits, and for certain conventions, it can be summarized as:
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} = -\infty \][/tex]
Thus, the given limit evaluates to:
[tex]\[ \boxed{-\infty} \][/tex]
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} \][/tex]
### Step 1: Substitute [tex]\(x = 1\)[/tex]
First, we should substitute [tex]\(x = 1\)[/tex] into the expression to see if it yields a determinate form:
[tex]\[ \frac{1^2 + 1}{1^2 - 3(1) + 2} = \frac{1 + 1}{1 - 3 + 2} = \frac{2}{0} \][/tex]
Since the denominator becomes 0, the expression is undefined at [tex]\( x = 1 \)[/tex]. Hence, we must find the limit using other methods, since directly substituting gives an indeterminate form of [tex]\(\frac{2}{0}\)[/tex].
### Step 2: Factor the Denominator
Factor the denominator [tex]\(x^2 - 3x + 2\)[/tex]:
[tex]\[ x^2 - 3x + 2 = (x - 1)(x - 2) \][/tex]
Now rewrite the original function with the factored form:
[tex]\[ \frac{x^2 + 1}{x^2 - 3x + 2} = \frac{x^2 + 1}{(x - 1)(x - 2)} \][/tex]
### Step 3: Analyze the Behavior Around [tex]\( x = 1 \)[/tex]
Since the denominator becomes zero at [tex]\( x = 1 \)[/tex], let's analyze the behavior of the function as [tex]\( x \)[/tex] approaches 1 from the left ([tex]\( x \to 1^- \)[/tex]) and from the right ([tex]\( x \to 1^+ \)[/tex]).
#### As [tex]\( x \to 1^- \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly negative (since [tex]\( x < 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 1 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be positive but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{+0} \)[/tex] which indicates [tex]\( +\infty \)[/tex].
#### As [tex]\( x \to 1^+ \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly positive (since [tex]\( x > 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 2 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be negative but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{-0} \)[/tex] which indicates [tex]\( -\infty \)[/tex].
### Conclusion:
Since as [tex]\( x \)[/tex] approaches 1 from the left, the function approaches [tex]\( +\infty \)[/tex], and as [tex]\( x \)[/tex] approaches 1 from the right, the function approaches [tex]\( -\infty \)[/tex], the overall limit does not exist in the standard sense. However, in one-sided limits, and for certain conventions, it can be summarized as:
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} = -\infty \][/tex]
Thus, the given limit evaluates to:
[tex]\[ \boxed{-\infty} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.