Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find other zeros of the polynomial [tex]\( f(x) = 2x^3 + 9x^2 - 8x - 36 \)[/tex] when [tex]\( x = -2 \)[/tex] is already known to be a zero, we follow these steps:
### Step 1: Verify [tex]\( x = -2 \)[/tex] is a zero
First, confirm that [tex]\( x = -2 \)[/tex] is indeed a zero by substituting [tex]\( x = -2 \)[/tex] into the polynomial:
[tex]\[ f(-2) = 2(-2)^3 + 9(-2)^2 - 8(-2) - 36 \][/tex]
[tex]\[ f(-2) = 2(-8) + 9(4) + 16 - 36 \][/tex]
[tex]\[ f(-2) = -16 + 36 + 16 - 36 \][/tex]
[tex]\[ f(-2) = 0 \][/tex]
Since [tex]\( f(-2) = 0 \)[/tex], [tex]\( x = -2 \)[/tex] is confirmed as a zero.
### Step 2: Polynomial factorization
Given one zero [tex]\( x = -2 \)[/tex], we can factorize the polynomial [tex]\( f(x) \)[/tex]. We know that [tex]\( (x + 2) \)[/tex] is a factor of [tex]\( f(x) \)[/tex]. We perform polynomial division or use factoring techniques to find the complete factorization of [tex]\( f(x) \)[/tex].
### Step 3: Use known factorization results
The polynomial can be factored into:
[tex]\[ f(x) = 2(x + 2)(x + \frac{9}{2})(x - 2) \][/tex]
This means that the zeros of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -2, \ \ x = -\frac{9}{2}, \ \ x = 2 \][/tex]
### Step 4: Identify other zeros
From the factorization, aside from the zero [tex]\( x = -2 \)[/tex], the other zeros are [tex]\( x = -\frac{9}{2} \)[/tex] and [tex]\( x = 2 \)[/tex].
Among the zero points given in the problem:
[tex]\[ x = 8 \][/tex]
[tex]\[ x = 4 \][/tex]
[tex]\[ x = 3 \][/tex]
[tex]\[ x = 2 \][/tex]
The option [tex]\( x = 2 \)[/tex] is listed among these, which matches the zero we have identified earlier.
Therefore, another zero of [tex]\( f(x) \)[/tex] is:
[tex]\[ x = 2 \][/tex]
Thus, the correct answer is:
[tex]\[ x = 2 \][/tex]
### Step 1: Verify [tex]\( x = -2 \)[/tex] is a zero
First, confirm that [tex]\( x = -2 \)[/tex] is indeed a zero by substituting [tex]\( x = -2 \)[/tex] into the polynomial:
[tex]\[ f(-2) = 2(-2)^3 + 9(-2)^2 - 8(-2) - 36 \][/tex]
[tex]\[ f(-2) = 2(-8) + 9(4) + 16 - 36 \][/tex]
[tex]\[ f(-2) = -16 + 36 + 16 - 36 \][/tex]
[tex]\[ f(-2) = 0 \][/tex]
Since [tex]\( f(-2) = 0 \)[/tex], [tex]\( x = -2 \)[/tex] is confirmed as a zero.
### Step 2: Polynomial factorization
Given one zero [tex]\( x = -2 \)[/tex], we can factorize the polynomial [tex]\( f(x) \)[/tex]. We know that [tex]\( (x + 2) \)[/tex] is a factor of [tex]\( f(x) \)[/tex]. We perform polynomial division or use factoring techniques to find the complete factorization of [tex]\( f(x) \)[/tex].
### Step 3: Use known factorization results
The polynomial can be factored into:
[tex]\[ f(x) = 2(x + 2)(x + \frac{9}{2})(x - 2) \][/tex]
This means that the zeros of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -2, \ \ x = -\frac{9}{2}, \ \ x = 2 \][/tex]
### Step 4: Identify other zeros
From the factorization, aside from the zero [tex]\( x = -2 \)[/tex], the other zeros are [tex]\( x = -\frac{9}{2} \)[/tex] and [tex]\( x = 2 \)[/tex].
Among the zero points given in the problem:
[tex]\[ x = 8 \][/tex]
[tex]\[ x = 4 \][/tex]
[tex]\[ x = 3 \][/tex]
[tex]\[ x = 2 \][/tex]
The option [tex]\( x = 2 \)[/tex] is listed among these, which matches the zero we have identified earlier.
Therefore, another zero of [tex]\( f(x) \)[/tex] is:
[tex]\[ x = 2 \][/tex]
Thus, the correct answer is:
[tex]\[ x = 2 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.