Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find other zeros of the polynomial [tex]\( f(x) = 2x^3 + 9x^2 - 8x - 36 \)[/tex] when [tex]\( x = -2 \)[/tex] is already known to be a zero, we follow these steps:
### Step 1: Verify [tex]\( x = -2 \)[/tex] is a zero
First, confirm that [tex]\( x = -2 \)[/tex] is indeed a zero by substituting [tex]\( x = -2 \)[/tex] into the polynomial:
[tex]\[ f(-2) = 2(-2)^3 + 9(-2)^2 - 8(-2) - 36 \][/tex]
[tex]\[ f(-2) = 2(-8) + 9(4) + 16 - 36 \][/tex]
[tex]\[ f(-2) = -16 + 36 + 16 - 36 \][/tex]
[tex]\[ f(-2) = 0 \][/tex]
Since [tex]\( f(-2) = 0 \)[/tex], [tex]\( x = -2 \)[/tex] is confirmed as a zero.
### Step 2: Polynomial factorization
Given one zero [tex]\( x = -2 \)[/tex], we can factorize the polynomial [tex]\( f(x) \)[/tex]. We know that [tex]\( (x + 2) \)[/tex] is a factor of [tex]\( f(x) \)[/tex]. We perform polynomial division or use factoring techniques to find the complete factorization of [tex]\( f(x) \)[/tex].
### Step 3: Use known factorization results
The polynomial can be factored into:
[tex]\[ f(x) = 2(x + 2)(x + \frac{9}{2})(x - 2) \][/tex]
This means that the zeros of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -2, \ \ x = -\frac{9}{2}, \ \ x = 2 \][/tex]
### Step 4: Identify other zeros
From the factorization, aside from the zero [tex]\( x = -2 \)[/tex], the other zeros are [tex]\( x = -\frac{9}{2} \)[/tex] and [tex]\( x = 2 \)[/tex].
Among the zero points given in the problem:
[tex]\[ x = 8 \][/tex]
[tex]\[ x = 4 \][/tex]
[tex]\[ x = 3 \][/tex]
[tex]\[ x = 2 \][/tex]
The option [tex]\( x = 2 \)[/tex] is listed among these, which matches the zero we have identified earlier.
Therefore, another zero of [tex]\( f(x) \)[/tex] is:
[tex]\[ x = 2 \][/tex]
Thus, the correct answer is:
[tex]\[ x = 2 \][/tex]
### Step 1: Verify [tex]\( x = -2 \)[/tex] is a zero
First, confirm that [tex]\( x = -2 \)[/tex] is indeed a zero by substituting [tex]\( x = -2 \)[/tex] into the polynomial:
[tex]\[ f(-2) = 2(-2)^3 + 9(-2)^2 - 8(-2) - 36 \][/tex]
[tex]\[ f(-2) = 2(-8) + 9(4) + 16 - 36 \][/tex]
[tex]\[ f(-2) = -16 + 36 + 16 - 36 \][/tex]
[tex]\[ f(-2) = 0 \][/tex]
Since [tex]\( f(-2) = 0 \)[/tex], [tex]\( x = -2 \)[/tex] is confirmed as a zero.
### Step 2: Polynomial factorization
Given one zero [tex]\( x = -2 \)[/tex], we can factorize the polynomial [tex]\( f(x) \)[/tex]. We know that [tex]\( (x + 2) \)[/tex] is a factor of [tex]\( f(x) \)[/tex]. We perform polynomial division or use factoring techniques to find the complete factorization of [tex]\( f(x) \)[/tex].
### Step 3: Use known factorization results
The polynomial can be factored into:
[tex]\[ f(x) = 2(x + 2)(x + \frac{9}{2})(x - 2) \][/tex]
This means that the zeros of [tex]\( f(x) \)[/tex] are:
[tex]\[ x = -2, \ \ x = -\frac{9}{2}, \ \ x = 2 \][/tex]
### Step 4: Identify other zeros
From the factorization, aside from the zero [tex]\( x = -2 \)[/tex], the other zeros are [tex]\( x = -\frac{9}{2} \)[/tex] and [tex]\( x = 2 \)[/tex].
Among the zero points given in the problem:
[tex]\[ x = 8 \][/tex]
[tex]\[ x = 4 \][/tex]
[tex]\[ x = 3 \][/tex]
[tex]\[ x = 2 \][/tex]
The option [tex]\( x = 2 \)[/tex] is listed among these, which matches the zero we have identified earlier.
Therefore, another zero of [tex]\( f(x) \)[/tex] is:
[tex]\[ x = 2 \][/tex]
Thus, the correct answer is:
[tex]\[ x = 2 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.