Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the inverse of the conditional statement [tex]\( p \rightarrow q \)[/tex], we need to understand the logical structure of such statements.
First, let's examine the given conditional statement:
[tex]\[ p \rightarrow q \][/tex]
where:
- [tex]\( p \)[/tex] is "a number is doubled"
- [tex]\( q \)[/tex] is "the result is even"
The inverse of the conditional statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( \sim p \rightarrow \sim q \)[/tex]. This means that if [tex]\( p \)[/tex] is false, then [tex]\( q \)[/tex] should also be false.
Now, let's break it down step by step:
1. Identify [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- [tex]\( p \)[/tex]: a number is doubled
- [tex]\( q \)[/tex]: the result is even
2. Determine the negations ([tex]\(\sim p\)[/tex] and [tex]\(\sim q\)[/tex]):
- [tex]\(\sim p\)[/tex]: a number is not doubled
- [tex]\(\sim q\)[/tex]: the result is not even
3. Form the inverse statement ([tex]\(\sim p \rightarrow \sim q\)[/tex]):
- If a number is not doubled, then the result is not even.
Given this breakdown, let's compare the provided options:
1. [tex]\(\sim p \rightarrow \sim q\)[/tex] where [tex]\( p = \)[/tex] a number is doubled and [tex]\( q = \)[/tex] the result is even:
- This correctly represents the inverse of the original statement.
2. [tex]\( q \rightarrow p\)[/tex] where [tex]\( p = \)[/tex] a number is doubled and [tex]\( q = \)[/tex] the result is even:
- This represents the converse, not the inverse.
3. [tex]\(\sim p \rightarrow \sim q\)[/tex] where [tex]\( p = \)[/tex] the result is even and [tex]\( q = \)[/tex] a number is doubled:
- This reverses the roles of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] and is incorrect.
4. [tex]\( q \rightarrow p\)[/tex] where [tex]\( p = \)[/tex] the result is even and [tex]\( q = \)[/tex] a number is doubled:
- This again represents the converse but with [tex]\( p \)[/tex] and [tex]\( q \)[/tex] reversed, and is incorrect.
The correct option is:
[tex]\[ \sim p \rightarrow \sim q \text{ where } p = \text{a number is doubled and } q = \text{the result is even} \][/tex]
Thus, the inverse of the given statement is represented by the first option. The correct answer is:
[tex]\[ 1 \][/tex]
First, let's examine the given conditional statement:
[tex]\[ p \rightarrow q \][/tex]
where:
- [tex]\( p \)[/tex] is "a number is doubled"
- [tex]\( q \)[/tex] is "the result is even"
The inverse of the conditional statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( \sim p \rightarrow \sim q \)[/tex]. This means that if [tex]\( p \)[/tex] is false, then [tex]\( q \)[/tex] should also be false.
Now, let's break it down step by step:
1. Identify [tex]\( p \)[/tex] and [tex]\( q \)[/tex]:
- [tex]\( p \)[/tex]: a number is doubled
- [tex]\( q \)[/tex]: the result is even
2. Determine the negations ([tex]\(\sim p\)[/tex] and [tex]\(\sim q\)[/tex]):
- [tex]\(\sim p\)[/tex]: a number is not doubled
- [tex]\(\sim q\)[/tex]: the result is not even
3. Form the inverse statement ([tex]\(\sim p \rightarrow \sim q\)[/tex]):
- If a number is not doubled, then the result is not even.
Given this breakdown, let's compare the provided options:
1. [tex]\(\sim p \rightarrow \sim q\)[/tex] where [tex]\( p = \)[/tex] a number is doubled and [tex]\( q = \)[/tex] the result is even:
- This correctly represents the inverse of the original statement.
2. [tex]\( q \rightarrow p\)[/tex] where [tex]\( p = \)[/tex] a number is doubled and [tex]\( q = \)[/tex] the result is even:
- This represents the converse, not the inverse.
3. [tex]\(\sim p \rightarrow \sim q\)[/tex] where [tex]\( p = \)[/tex] the result is even and [tex]\( q = \)[/tex] a number is doubled:
- This reverses the roles of [tex]\( p \)[/tex] and [tex]\( q \)[/tex] and is incorrect.
4. [tex]\( q \rightarrow p\)[/tex] where [tex]\( p = \)[/tex] the result is even and [tex]\( q = \)[/tex] a number is doubled:
- This again represents the converse but with [tex]\( p \)[/tex] and [tex]\( q \)[/tex] reversed, and is incorrect.
The correct option is:
[tex]\[ \sim p \rightarrow \sim q \text{ where } p = \text{a number is doubled and } q = \text{the result is even} \][/tex]
Thus, the inverse of the given statement is represented by the first option. The correct answer is:
[tex]\[ 1 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.