Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex]1296[/tex] would be the term immediately after the term [tex]216[/tex].
Step-by-step explanation:
The recursive formula for the [tex]n[/tex]th term a geometric series is:
[tex]a_{n} = r\, a_{n - 1}[/tex],
Where:
- [tex]r[/tex] is the common ratio of this series, and
- [tex]a_{n - 1}[/tex] denotes the [tex](n-1)[/tex]th term of the series, which is the term immediately before the [tex]n[/tex]th term.
The common ratio of a geometric series is the ratio between each term and the term before it- for example, the ratio between the term [tex]36[/tex] and the term right before it, [tex]6[/tex]. Using this property, the common ratio of the geometric series in this question would be:
[tex]\displaystyle r = \frac{36}{6} = 6[/tex].
In this question, if [tex]a_{n}[/tex] represents the unknown term, [tex]216[/tex] would be the value of [tex]a_{n-1}[/tex], which is immediately before that unknown term. Since the common ratio is [tex]r = 6[/tex], the value of the unknown term [tex]a_{n}[/tex] can be found using the recursive formula as follows:
[tex]a_{n} = r\, a_{n - 1} = (6) \times (216) = 1296[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.