Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to understand the population growth under ideal conditions. The population doubles every nine years. Let [tex]\( t \)[/tex] be the number of years after the start.
Initially, the population is 100 individuals.
In exponential growth scenarios where the population doubles at a regular interval, the population [tex]\( P(t) \)[/tex] at time [tex]\( t \)[/tex] can be calculated using the formula:
[tex]\[ P(t) = P_0 \times 2^{\frac{t}{d}} \][/tex]
where:
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( t \)[/tex] is the time in years,
- [tex]\( d \)[/tex] is the doubling period in years.
Here, [tex]\( P_0 \)[/tex] is 100, and [tex]\( d \)[/tex] is 9 years.
Substituting these values into the formula gives us:
[tex]\[ P(t) = 100 \times 2^{\frac{t}{9}} \][/tex]
So, the correct expression for the population after [tex]\( t \)[/tex] years is:
[tex]\[ 100 \times 2^{\frac{t}{9}} \][/tex]
Thus, the correct choice matches the expression we derived:
[tex]\[ \boxed{100 \times 2^{\frac{t}{9}}} \][/tex]
Therefore, the answer is the fourth option.
Initially, the population is 100 individuals.
In exponential growth scenarios where the population doubles at a regular interval, the population [tex]\( P(t) \)[/tex] at time [tex]\( t \)[/tex] can be calculated using the formula:
[tex]\[ P(t) = P_0 \times 2^{\frac{t}{d}} \][/tex]
where:
- [tex]\( P_0 \)[/tex] is the initial population,
- [tex]\( t \)[/tex] is the time in years,
- [tex]\( d \)[/tex] is the doubling period in years.
Here, [tex]\( P_0 \)[/tex] is 100, and [tex]\( d \)[/tex] is 9 years.
Substituting these values into the formula gives us:
[tex]\[ P(t) = 100 \times 2^{\frac{t}{9}} \][/tex]
So, the correct expression for the population after [tex]\( t \)[/tex] years is:
[tex]\[ 100 \times 2^{\frac{t}{9}} \][/tex]
Thus, the correct choice matches the expression we derived:
[tex]\[ \boxed{100 \times 2^{\frac{t}{9}}} \][/tex]
Therefore, the answer is the fourth option.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.