Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine a line that is perpendicular to a given line, we need to understand the relationship between their slopes. When two lines are perpendicular, the product of their slopes is [tex]\(-1\)[/tex]. This means that if we have a line with a slope [tex]\( m \)[/tex], the slope of the line that is perpendicular to it will be the negative reciprocal of [tex]\( m \)[/tex].
Let's apply this to the given problem step-by-step:
1. Identify the slope of the given line. The problem states that the slope of the given line is [tex]\(\frac{1}{2}\)[/tex].
2. Find the negative reciprocal of the given slope to determine the slope of the line that is perpendicular to it. The negative reciprocal of [tex]\(\frac{1}{2}\)[/tex] is [tex]\(-2\)[/tex].
To calculate the negative reciprocal of a fraction [tex]\(\frac{a}{b}\)[/tex]:
- Invert the fraction, changing [tex]\(\frac{a}{b}\)[/tex] to [tex]\(\frac{b}{a}\)[/tex].
- Change the sign to its opposite. Since [tex]\(\frac{a}{b}\)[/tex] is positive, its negative reciprocal will be negative.
Therefore, the negative reciprocal of [tex]\(\frac{1}{2}\)[/tex] is calculated as follows:
[tex]\[ \text{Negative reciprocal of } \frac{1}{2} = -\frac{2}{1} = -2 \][/tex]
Thus, the slope of the line perpendicular to the given line is [tex]\(-2\)[/tex].
Given the above calculation, the line that is perpendicular to the line with slope [tex]\(\frac{1}{2}\)[/tex] will have a slope of [tex]\(-2\)[/tex]. This means any of the lines listed (line [tex]\(AB\)[/tex], line [tex]\(CD\)[/tex], line [tex]\(FG\)[/tex], or line [tex]\(HJ\)[/tex]) that has a slope of [tex]\(-2\)[/tex] will be perpendicular to the given line.
Let's apply this to the given problem step-by-step:
1. Identify the slope of the given line. The problem states that the slope of the given line is [tex]\(\frac{1}{2}\)[/tex].
2. Find the negative reciprocal of the given slope to determine the slope of the line that is perpendicular to it. The negative reciprocal of [tex]\(\frac{1}{2}\)[/tex] is [tex]\(-2\)[/tex].
To calculate the negative reciprocal of a fraction [tex]\(\frac{a}{b}\)[/tex]:
- Invert the fraction, changing [tex]\(\frac{a}{b}\)[/tex] to [tex]\(\frac{b}{a}\)[/tex].
- Change the sign to its opposite. Since [tex]\(\frac{a}{b}\)[/tex] is positive, its negative reciprocal will be negative.
Therefore, the negative reciprocal of [tex]\(\frac{1}{2}\)[/tex] is calculated as follows:
[tex]\[ \text{Negative reciprocal of } \frac{1}{2} = -\frac{2}{1} = -2 \][/tex]
Thus, the slope of the line perpendicular to the given line is [tex]\(-2\)[/tex].
Given the above calculation, the line that is perpendicular to the line with slope [tex]\(\frac{1}{2}\)[/tex] will have a slope of [tex]\(-2\)[/tex]. This means any of the lines listed (line [tex]\(AB\)[/tex], line [tex]\(CD\)[/tex], line [tex]\(FG\)[/tex], or line [tex]\(HJ\)[/tex]) that has a slope of [tex]\(-2\)[/tex] will be perpendicular to the given line.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.