Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Amelia truncates a positive number, [tex]\( x \)[/tex], to 1 decimal place to get another number, [tex]\( y \)[/tex].

Is it possible for [tex]\( y \)[/tex] to be larger than [tex]\( x \)[/tex]?

Write a sentence to explain your answer.

Sagot :

To determine if it is possible for the number [tex]\( y \)[/tex] to be larger than [tex]\( x \)[/tex] when [tex]\( x \)[/tex] is truncated to 1 decimal place, let's consider an example. Suppose [tex]\( x \)[/tex] is 3.456.

When truncating a number to one decimal place, we simply remove any digits beyond the first decimal place without rounding.

So, for [tex]\( x = 3.456 \)[/tex]:

1. Original number [tex]\( x \)[/tex] = 3.456
2. After truncation to one decimal place, [tex]\( y \)[/tex] = 3.4

In this example, [tex]\( y \)[/tex] after truncation is 3.4, which is clearly less than [tex]\( x \)[/tex], 3.456.

Hence, it is not possible for [tex]\( y \)[/tex] to be larger than [tex]\( x \)[/tex] when a number is truncated to 1 decimal place. Truncation always either keeps the number the same if it ends at the truncation point, or reduces the value since any digits beyond the truncation point are discarded.