Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's solve the equation step-by-step.
Given:
[tex]\[ 4^{5x} \div \left(2^{3x}\right)^2 = 256 \][/tex]
1. Simplify the left-hand side of the equation:
Notice that [tex]\(4\)[/tex] can be written as [tex]\(2^2\)[/tex]. Therefore, [tex]\(4^{5x}\)[/tex] can be rewritten in terms of base 2:
[tex]\[ 4^{5x} = (2^2)^{5x} = 2^{10x} \][/tex]
Next, simplify [tex]\(\left(2^{3x}\right)^2\)[/tex]:
[tex]\[ \left(2^{3x}\right)^2 = 2^{3x \cdot 2} = 2^{6x} \][/tex]
Now the equation becomes:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 256 \][/tex]
2. Apply the properties of exponents:
When you divide powers with the same base, you subtract the exponents:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 2^{10x - 6x} = 2^{4x} \][/tex]
So the equation now is:
[tex]\[ 2^{4x} = 256 \][/tex]
3. Rewrite 256 as a power of 2:
We know that [tex]\(256 = 2^8\)[/tex]:
[tex]\[ 2^{4x} = 2^8 \][/tex]
4. Equate the exponents:
Since the bases (2) are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 8 \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Divide both sides by 4:
[tex]\[ x = \frac{8}{4} = 2 \][/tex]
Therefore, the solution is:
[tex]\[ x = 2 \][/tex]
Given:
[tex]\[ 4^{5x} \div \left(2^{3x}\right)^2 = 256 \][/tex]
1. Simplify the left-hand side of the equation:
Notice that [tex]\(4\)[/tex] can be written as [tex]\(2^2\)[/tex]. Therefore, [tex]\(4^{5x}\)[/tex] can be rewritten in terms of base 2:
[tex]\[ 4^{5x} = (2^2)^{5x} = 2^{10x} \][/tex]
Next, simplify [tex]\(\left(2^{3x}\right)^2\)[/tex]:
[tex]\[ \left(2^{3x}\right)^2 = 2^{3x \cdot 2} = 2^{6x} \][/tex]
Now the equation becomes:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 256 \][/tex]
2. Apply the properties of exponents:
When you divide powers with the same base, you subtract the exponents:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 2^{10x - 6x} = 2^{4x} \][/tex]
So the equation now is:
[tex]\[ 2^{4x} = 256 \][/tex]
3. Rewrite 256 as a power of 2:
We know that [tex]\(256 = 2^8\)[/tex]:
[tex]\[ 2^{4x} = 2^8 \][/tex]
4. Equate the exponents:
Since the bases (2) are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 8 \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Divide both sides by 4:
[tex]\[ x = \frac{8}{4} = 2 \][/tex]
Therefore, the solution is:
[tex]\[ x = 2 \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.