Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's solve the equation step-by-step.
Given:
[tex]\[ 4^{5x} \div \left(2^{3x}\right)^2 = 256 \][/tex]
1. Simplify the left-hand side of the equation:
Notice that [tex]\(4\)[/tex] can be written as [tex]\(2^2\)[/tex]. Therefore, [tex]\(4^{5x}\)[/tex] can be rewritten in terms of base 2:
[tex]\[ 4^{5x} = (2^2)^{5x} = 2^{10x} \][/tex]
Next, simplify [tex]\(\left(2^{3x}\right)^2\)[/tex]:
[tex]\[ \left(2^{3x}\right)^2 = 2^{3x \cdot 2} = 2^{6x} \][/tex]
Now the equation becomes:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 256 \][/tex]
2. Apply the properties of exponents:
When you divide powers with the same base, you subtract the exponents:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 2^{10x - 6x} = 2^{4x} \][/tex]
So the equation now is:
[tex]\[ 2^{4x} = 256 \][/tex]
3. Rewrite 256 as a power of 2:
We know that [tex]\(256 = 2^8\)[/tex]:
[tex]\[ 2^{4x} = 2^8 \][/tex]
4. Equate the exponents:
Since the bases (2) are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 8 \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Divide both sides by 4:
[tex]\[ x = \frac{8}{4} = 2 \][/tex]
Therefore, the solution is:
[tex]\[ x = 2 \][/tex]
Given:
[tex]\[ 4^{5x} \div \left(2^{3x}\right)^2 = 256 \][/tex]
1. Simplify the left-hand side of the equation:
Notice that [tex]\(4\)[/tex] can be written as [tex]\(2^2\)[/tex]. Therefore, [tex]\(4^{5x}\)[/tex] can be rewritten in terms of base 2:
[tex]\[ 4^{5x} = (2^2)^{5x} = 2^{10x} \][/tex]
Next, simplify [tex]\(\left(2^{3x}\right)^2\)[/tex]:
[tex]\[ \left(2^{3x}\right)^2 = 2^{3x \cdot 2} = 2^{6x} \][/tex]
Now the equation becomes:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 256 \][/tex]
2. Apply the properties of exponents:
When you divide powers with the same base, you subtract the exponents:
[tex]\[ \frac{2^{10x}}{2^{6x}} = 2^{10x - 6x} = 2^{4x} \][/tex]
So the equation now is:
[tex]\[ 2^{4x} = 256 \][/tex]
3. Rewrite 256 as a power of 2:
We know that [tex]\(256 = 2^8\)[/tex]:
[tex]\[ 2^{4x} = 2^8 \][/tex]
4. Equate the exponents:
Since the bases (2) are the same, we can set the exponents equal to each other:
[tex]\[ 4x = 8 \][/tex]
5. Solve for [tex]\(x\)[/tex]:
Divide both sides by 4:
[tex]\[ x = \frac{8}{4} = 2 \][/tex]
Therefore, the solution is:
[tex]\[ x = 2 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.