Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine whether the function [tex]\( f(x) = x^2 \)[/tex] increases or decreases when [tex]\( x > 1 \)[/tex], we can analyze its derivative.
1. Define the function:
[tex]\[ f(x) = x^2 \][/tex]
2. Compute the derivative of [tex]\( f(x) \)[/tex]:
Using the power rule for differentiation, which states that the derivative of [tex]\( x^n \)[/tex] is [tex]\( nx^{n-1} \)[/tex], we find:
[tex]\[ f'(x) = \frac{d}{dx}(x^2) = 2x \][/tex]
3. Analyze the sign of the derivative for [tex]\( x > 1 \)[/tex]:
We need to check the value of [tex]\( f'(x) \)[/tex] when [tex]\( x > 1 \)[/tex]. Specifically:
[tex]\[ f'(x) = 2x \][/tex]
For [tex]\( x > 1 \)[/tex], let's consider a point slightly greater than 1, say [tex]\( x = 1.1 \)[/tex].
4. Substitute [tex]\( x = 1.1 \)[/tex] into the derivative:
[tex]\[ f'(1.1) = 2 \times 1.1 = 2.2 \][/tex]
Since [tex]\( f'(1.1) = 2.2 \)[/tex] is positive, we can conclude that [tex]\( f(x) = x^2 \)[/tex] is increasing when [tex]\( x > 1 \)[/tex]. This is because the positive derivative indicates that the function's slope is positive, implying that the function is increasing in this interval.
1. Define the function:
[tex]\[ f(x) = x^2 \][/tex]
2. Compute the derivative of [tex]\( f(x) \)[/tex]:
Using the power rule for differentiation, which states that the derivative of [tex]\( x^n \)[/tex] is [tex]\( nx^{n-1} \)[/tex], we find:
[tex]\[ f'(x) = \frac{d}{dx}(x^2) = 2x \][/tex]
3. Analyze the sign of the derivative for [tex]\( x > 1 \)[/tex]:
We need to check the value of [tex]\( f'(x) \)[/tex] when [tex]\( x > 1 \)[/tex]. Specifically:
[tex]\[ f'(x) = 2x \][/tex]
For [tex]\( x > 1 \)[/tex], let's consider a point slightly greater than 1, say [tex]\( x = 1.1 \)[/tex].
4. Substitute [tex]\( x = 1.1 \)[/tex] into the derivative:
[tex]\[ f'(1.1) = 2 \times 1.1 = 2.2 \][/tex]
Since [tex]\( f'(1.1) = 2.2 \)[/tex] is positive, we can conclude that [tex]\( f(x) = x^2 \)[/tex] is increasing when [tex]\( x > 1 \)[/tex]. This is because the positive derivative indicates that the function's slope is positive, implying that the function is increasing in this interval.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.