Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the concentration of the new solution, let's go through the problem step-by-step.
Step 1: Calculate the number of moles of [tex]\((NH_4)_2SO_4\)[/tex] in the stock solution.
Given:
- Mass of [tex]\((NH_4)_2SO_4 = 66.05 \, \text{g}\)[/tex]
- Molar mass of [tex]\((NH_4)_2SO_4 = 132.1 \, \text{g/mol}\)[/tex]
The number of moles of [tex]\((NH_4)_2SO_4\)[/tex] can be calculated using the formula:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } (NH_4)_2SO_4 = \frac{66.05 \, \text{g}}{132.1 \, \text{g/mol}} \approx 0.5 \, \text{moles} \][/tex]
Step 2: Calculate the initial concentration of the stock solution.
Given:
- Volume of the solution = 250 mL = 0.250 L
The concentration (molarity) of the stock solution is:
[tex]\[ \text{Molarity} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ \text{Initial concentration} = \frac{0.5 \, \text{moles}}{0.250 \, \text{L}} = 2.0 \, \text{M} \][/tex]
Step 3: Evaluate the effect of diluting the stock solution.
A 10.0 mL sample of the 2.0 M stock solution is diluted to 50.0 mL.
Using the dilution formula [tex]\( M_i V_i = M_f V_f \)[/tex]:
Given:
- [tex]\(M_i = 2.0 \, \text{M}\)[/tex]
- [tex]\(V_i = 10.0 \, \text{mL} = 0.010 \, \text{L}\)[/tex]
- [tex]\(V_f = 50.0 \, \text{mL} = 0.050 \, \text{L}\)[/tex]
We need to find the final concentration [tex]\(M_f\)[/tex]:
[tex]\[ M_i V_i = M_f V_f \][/tex]
[tex]\[ 2.0 \, \text{M} \times 0.010 \, \text{L} = M_f \times 0.050 \, \text{L} \][/tex]
[tex]\[ 0.020 = M_f \times 0.050 \][/tex]
[tex]\[ M_f = \frac{0.020}{0.050} = 0.4 \, \text{M} \][/tex]
Conclusion:
The concentration of the new solution after dilution is [tex]\( 0.4 \, \text{M} \)[/tex]. Therefore, the correct answer is:
[tex]\[ 0.400 \, \text{M} \][/tex]
Step 1: Calculate the number of moles of [tex]\((NH_4)_2SO_4\)[/tex] in the stock solution.
Given:
- Mass of [tex]\((NH_4)_2SO_4 = 66.05 \, \text{g}\)[/tex]
- Molar mass of [tex]\((NH_4)_2SO_4 = 132.1 \, \text{g/mol}\)[/tex]
The number of moles of [tex]\((NH_4)_2SO_4\)[/tex] can be calculated using the formula:
[tex]\[ \text{moles} = \frac{\text{mass}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of } (NH_4)_2SO_4 = \frac{66.05 \, \text{g}}{132.1 \, \text{g/mol}} \approx 0.5 \, \text{moles} \][/tex]
Step 2: Calculate the initial concentration of the stock solution.
Given:
- Volume of the solution = 250 mL = 0.250 L
The concentration (molarity) of the stock solution is:
[tex]\[ \text{Molarity} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ \text{Initial concentration} = \frac{0.5 \, \text{moles}}{0.250 \, \text{L}} = 2.0 \, \text{M} \][/tex]
Step 3: Evaluate the effect of diluting the stock solution.
A 10.0 mL sample of the 2.0 M stock solution is diluted to 50.0 mL.
Using the dilution formula [tex]\( M_i V_i = M_f V_f \)[/tex]:
Given:
- [tex]\(M_i = 2.0 \, \text{M}\)[/tex]
- [tex]\(V_i = 10.0 \, \text{mL} = 0.010 \, \text{L}\)[/tex]
- [tex]\(V_f = 50.0 \, \text{mL} = 0.050 \, \text{L}\)[/tex]
We need to find the final concentration [tex]\(M_f\)[/tex]:
[tex]\[ M_i V_i = M_f V_f \][/tex]
[tex]\[ 2.0 \, \text{M} \times 0.010 \, \text{L} = M_f \times 0.050 \, \text{L} \][/tex]
[tex]\[ 0.020 = M_f \times 0.050 \][/tex]
[tex]\[ M_f = \frac{0.020}{0.050} = 0.4 \, \text{M} \][/tex]
Conclusion:
The concentration of the new solution after dilution is [tex]\( 0.4 \, \text{M} \)[/tex]. Therefore, the correct answer is:
[tex]\[ 0.400 \, \text{M} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.