Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the area of a regular pentagon-shaped pool, we need to use the area formula for a regular pentagon. Given the side length of 23.62 feet, we proceed as follows:
### Step-by-Step Solution:
1. Identify the side length and number of sides of the pentagon:
- Side length ([tex]\(s\)[/tex]): 23.62 feet
- Number of sides ([tex]\(n\)[/tex]): 5 (since it's a pentagon)
2. Area Formula for Regular Pentagon:
The formula to find the area [tex]\(A\)[/tex] of a regular pentagon with a given side length [tex]\(s\)[/tex] is:
[tex]\[ A = \frac{5}{4} \times s^2 \times \frac{1}{\tan\left(\frac{\pi}{5}\right)} \][/tex]
3. Plug in the values:
- Side length [tex]\(s = 23.62\)[/tex] feet
[tex]\[ A = \frac{5 \times (23.62)^2}{4 \times \tan\left(\frac{\pi}{5}\right)} \][/tex]
4. Calculate the tan of [tex]\(\frac{\pi}{5}\)[/tex] and then calculate the entire area:
This requires precise computation to get an exact value (let's not show the intermediary tangent steps as it's detailed).
After performing the calculation:
[tex]\[ A \approx 959.8619118891473 \text{ square feet} \][/tex]
5. Round to the nearest square foot:
[tex]\[ A_{\text{rounded}} \approx 960 \text{ square feet} \][/tex]
Thus, the area of the pool that needs to be covered, rounded to the nearest square foot, is:
[tex]\[ \boxed{960 \text{ square feet}} \][/tex]
### Step-by-Step Solution:
1. Identify the side length and number of sides of the pentagon:
- Side length ([tex]\(s\)[/tex]): 23.62 feet
- Number of sides ([tex]\(n\)[/tex]): 5 (since it's a pentagon)
2. Area Formula for Regular Pentagon:
The formula to find the area [tex]\(A\)[/tex] of a regular pentagon with a given side length [tex]\(s\)[/tex] is:
[tex]\[ A = \frac{5}{4} \times s^2 \times \frac{1}{\tan\left(\frac{\pi}{5}\right)} \][/tex]
3. Plug in the values:
- Side length [tex]\(s = 23.62\)[/tex] feet
[tex]\[ A = \frac{5 \times (23.62)^2}{4 \times \tan\left(\frac{\pi}{5}\right)} \][/tex]
4. Calculate the tan of [tex]\(\frac{\pi}{5}\)[/tex] and then calculate the entire area:
This requires precise computation to get an exact value (let's not show the intermediary tangent steps as it's detailed).
After performing the calculation:
[tex]\[ A \approx 959.8619118891473 \text{ square feet} \][/tex]
5. Round to the nearest square foot:
[tex]\[ A_{\text{rounded}} \approx 960 \text{ square feet} \][/tex]
Thus, the area of the pool that needs to be covered, rounded to the nearest square foot, is:
[tex]\[ \boxed{960 \text{ square feet}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.