At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's find the value of [tex]\( k \)[/tex] such that [tex]\( x + k \)[/tex] is a factor of the polynomial [tex]\( x^2 + kx + k - 2 \)[/tex].
### Step-by-Step Solution:
1. Factor Theorem Application:
According to the Factor Theorem, [tex]\( x + k \)[/tex] is a factor of the polynomial [tex]\( x^2 + kx + k - 2 \)[/tex] if and only if substituting [tex]\( x = -k \)[/tex] into the polynomial yields zero.
2. Substitution and Setting the Polynomial to Zero:
Substitute [tex]\( x = -k \)[/tex] into the polynomial:
[tex]\[ (-k)^2 + k(-k) + k - 2 = 0 \][/tex]
3. Simplify the Substitution:
Simplify the expression:
[tex]\[ k^2 - k^2 + k - 2 = 0 \][/tex]
[tex]\[ 0 + k - 2 = 0 \][/tex]
[tex]\[ k - 2 = 0 \][/tex]
4. Solve for [tex]\( k \)[/tex]:
Solving the equation [tex]\( k - 2 = 0 \)[/tex], we find:
[tex]\[ k = 2 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] for which [tex]\( x + k \)[/tex] is a factor of [tex]\( x^2 + k x + k - 2 \)[/tex] is [tex]\( k = 2 \)[/tex].
### Step-by-Step Solution:
1. Factor Theorem Application:
According to the Factor Theorem, [tex]\( x + k \)[/tex] is a factor of the polynomial [tex]\( x^2 + kx + k - 2 \)[/tex] if and only if substituting [tex]\( x = -k \)[/tex] into the polynomial yields zero.
2. Substitution and Setting the Polynomial to Zero:
Substitute [tex]\( x = -k \)[/tex] into the polynomial:
[tex]\[ (-k)^2 + k(-k) + k - 2 = 0 \][/tex]
3. Simplify the Substitution:
Simplify the expression:
[tex]\[ k^2 - k^2 + k - 2 = 0 \][/tex]
[tex]\[ 0 + k - 2 = 0 \][/tex]
[tex]\[ k - 2 = 0 \][/tex]
4. Solve for [tex]\( k \)[/tex]:
Solving the equation [tex]\( k - 2 = 0 \)[/tex], we find:
[tex]\[ k = 2 \][/tex]
Therefore, the value of [tex]\( k \)[/tex] for which [tex]\( x + k \)[/tex] is a factor of [tex]\( x^2 + k x + k - 2 \)[/tex] is [tex]\( k = 2 \)[/tex].
Answer:
2
Step-by-step explanation:
To determine the value of \( k \) for which \( x + k \) is a factor of \( x^2 + kx + k - 2 \), we proceed as follows:
Since \( x + k \) is a factor, the polynomial \( x^2 + kx + k - 2 \) must be divisible by \( x + k \). By the factor theorem, if \( x + k \) is a factor, then \( x = -k \) is a root of the polynomial.
Substitute \( x = -k \) into \( x^2 + kx + k - 2 \):
\[
(-k)^2 + k(-k) + k - 2 = k^2 - k^2 + k - 2 = k - 2
\]
For \( x + k \) to be a factor, \( k - 2 \) must equal \( 0 \) (since the remainder when \( x^2 + kx + k - 2 \) is divided by \( x + k \) should be zero):
\[
k - 2 = 0
\]
\[
k = 2
\]
Therefore, the value of \( k \) for which \( x + k \) is a factor of \( x^2 + kx + k - 2 \) is \( \boxed{2} \).
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.