Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

A bag contains red marbles, blue marbles, and yellow marbles.

- The probability of picking a red marble is [tex]\(\frac{2}{5}\)[/tex].
- There are nine yellow marbles.
- The probability of picking a blue marble is three times as likely as picking a yellow marble.

Work out the total number of marbles in the bag. You must show your work.


Sagot :

Let's solve this step-by-step:

1. Define the Given Information:

- The probability of picking a red marble is [tex]\(\frac{2}{5}\)[/tex].
- The number of yellow marbles is [tex]\(9\)[/tex].
- The probability of picking a blue marble is three times the probability of picking a yellow marble.

2. Determine the Number of Blue Marbles:

- Let the total number of marbles in the bag be [tex]\(n\)[/tex].
- Let the number of blue marbles be [tex]\(B\)[/tex].
- The probability of picking a blue marble is [tex]\(\frac{B}{n}\)[/tex].
- The probability of picking a yellow marble is [tex]\(\frac{9}{n}\)[/tex].
- We know the probability of picking a blue marble is three times that of picking a yellow marble, so:
[tex]\[ \frac{B}{n} = 3 \times \frac{9}{n} \][/tex]
[tex]\[ B = 3 \times 9 = 27 \][/tex]
Therefore, there are [tex]\(27\)[/tex] blue marbles.

3. Set Up the Equation for the Total Number of Marbles:

- Let the number of red marbles be [tex]\(R\)[/tex].
- The probability of picking a red marble is [tex]\(\frac{R}{n}\)[/tex], which is given as [tex]\(\frac{2}{5}\)[/tex].
- Thus, we have:
[tex]\[ \frac{R}{n} = \frac{2}{5} \][/tex]
Therefore, [tex]\(R = \frac{2}{5} \times n\)[/tex].

4. Write the Total Number of Marbles in Terms of [tex]\(n\)[/tex]:

- The total number of marbles [tex]\(n\)[/tex] is the sum of the red marbles, blue marbles, and yellow marbles:
[tex]\[ n = R + B + 9 \][/tex]
Substitute [tex]\(R\)[/tex] and [tex]\(B\)[/tex] with their respective expressions:
[tex]\[ n = \frac{2}{5}n + 27 + 9 \][/tex]
Simplify:
[tex]\[ n = \frac{2}{5}n + 36 \][/tex]

5. Solve for [tex]\(n\)[/tex]:

- Subtract [tex]\(\frac{2}{5}n\)[/tex] from both sides to isolate [tex]\(n\)[/tex]:
[tex]\[ n - \frac{2}{5}n = 36 \][/tex]
Factor out [tex]\(n\)[/tex] on the left side:
[tex]\[ \left(1 - \frac{2}{5}\right)n = 36 \][/tex]
Simplify the expression within the parentheses:
[tex]\[ \left(\frac{5}{5} - \frac{2}{5}\right)n = 36 \][/tex]
[tex]\[ \left(\frac{3}{5}\right)n = 36 \][/tex]

- Solve for [tex]\(n\)[/tex] by multiplying both sides by [tex]\(\frac{5}{3}\)[/tex]:
[tex]\[ n = 36 \times \frac{5}{3} \][/tex]
[tex]\[ n = 60 \][/tex]

6. Conclusion:

- The total number of marbles in the bag is [tex]\(60\)[/tex].

To summarize:

- There are [tex]\(27\)[/tex] blue marbles.
- There are [tex]\(9\)[/tex] yellow marbles.
- The total number of marbles in the bag is [tex]\(60\)[/tex].