At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the radius of the circle given by the equation [tex]\( x^2 + y^2 + 8x - 6y + 21 = 0 \)[/tex], we need to rewrite the equation in the standard form of a circle's equation, which is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is its radius.
Here's the step-by-step process:
1. Rewrite the equation:
Start with the given equation:
[tex]\[ x^2 + y^2 + 8x - 6y + 21 = 0 \][/tex]
Move the constant term to the right side of the equation:
[tex]\[ x^2 + y^2 + 8x - 6y = -21 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the [tex]\(x\)[/tex] terms: [tex]\( x^2 + 8x \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{8}{2})^2\)[/tex] which is [tex]\(16\)[/tex]:
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
- Take the [tex]\(y\)[/tex] terms: [tex]\( y^2 - 6y \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{-6}{2})^2\)[/tex] which is [tex]\(9\)[/tex]:
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
4. Substitute back into the equation:
Substitute the completed squares back into the equation:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 = -21 \][/tex]
5. Simplify:
Combine like terms and move constants to the right side:
[tex]\[ (x + 4)^2 + (y - 3)^2 - 25 = -21 \][/tex]
[tex]\[ (x + 4)^2 + (y - 3)^2 = 4 \][/tex]
6. Identify the radius:
The equation [tex]\((x + 4)^2 + (y - 3)^2 = 4\)[/tex] is now in the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]. Here, [tex]\( (h, k) = (-4, 3) \)[/tex] is the center, and [tex]\( r^2 = 4 \)[/tex]. The radius [tex]\( r \)[/tex] is the square root of 4:
[tex]\[ r = \sqrt{4} = 2 \][/tex]
Therefore, the radius of the circle is [tex]\( 2 \)[/tex] units.
Here's the step-by-step process:
1. Rewrite the equation:
Start with the given equation:
[tex]\[ x^2 + y^2 + 8x - 6y + 21 = 0 \][/tex]
Move the constant term to the right side of the equation:
[tex]\[ x^2 + y^2 + 8x - 6y = -21 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the [tex]\(x\)[/tex] terms: [tex]\( x^2 + 8x \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{8}{2})^2\)[/tex] which is [tex]\(16\)[/tex]:
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
- Take the [tex]\(y\)[/tex] terms: [tex]\( y^2 - 6y \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{-6}{2})^2\)[/tex] which is [tex]\(9\)[/tex]:
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
4. Substitute back into the equation:
Substitute the completed squares back into the equation:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 = -21 \][/tex]
5. Simplify:
Combine like terms and move constants to the right side:
[tex]\[ (x + 4)^2 + (y - 3)^2 - 25 = -21 \][/tex]
[tex]\[ (x + 4)^2 + (y - 3)^2 = 4 \][/tex]
6. Identify the radius:
The equation [tex]\((x + 4)^2 + (y - 3)^2 = 4\)[/tex] is now in the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]. Here, [tex]\( (h, k) = (-4, 3) \)[/tex] is the center, and [tex]\( r^2 = 4 \)[/tex]. The radius [tex]\( r \)[/tex] is the square root of 4:
[tex]\[ r = \sqrt{4} = 2 \][/tex]
Therefore, the radius of the circle is [tex]\( 2 \)[/tex] units.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.