Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the radius of the circle given by the equation [tex]\( x^2 + y^2 + 8x - 6y + 21 = 0 \)[/tex], we need to rewrite the equation in the standard form of a circle's equation, which is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is its radius.
Here's the step-by-step process:
1. Rewrite the equation:
Start with the given equation:
[tex]\[ x^2 + y^2 + 8x - 6y + 21 = 0 \][/tex]
Move the constant term to the right side of the equation:
[tex]\[ x^2 + y^2 + 8x - 6y = -21 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the [tex]\(x\)[/tex] terms: [tex]\( x^2 + 8x \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{8}{2})^2\)[/tex] which is [tex]\(16\)[/tex]:
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
- Take the [tex]\(y\)[/tex] terms: [tex]\( y^2 - 6y \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{-6}{2})^2\)[/tex] which is [tex]\(9\)[/tex]:
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
4. Substitute back into the equation:
Substitute the completed squares back into the equation:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 = -21 \][/tex]
5. Simplify:
Combine like terms and move constants to the right side:
[tex]\[ (x + 4)^2 + (y - 3)^2 - 25 = -21 \][/tex]
[tex]\[ (x + 4)^2 + (y - 3)^2 = 4 \][/tex]
6. Identify the radius:
The equation [tex]\((x + 4)^2 + (y - 3)^2 = 4\)[/tex] is now in the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]. Here, [tex]\( (h, k) = (-4, 3) \)[/tex] is the center, and [tex]\( r^2 = 4 \)[/tex]. The radius [tex]\( r \)[/tex] is the square root of 4:
[tex]\[ r = \sqrt{4} = 2 \][/tex]
Therefore, the radius of the circle is [tex]\( 2 \)[/tex] units.
Here's the step-by-step process:
1. Rewrite the equation:
Start with the given equation:
[tex]\[ x^2 + y^2 + 8x - 6y + 21 = 0 \][/tex]
Move the constant term to the right side of the equation:
[tex]\[ x^2 + y^2 + 8x - 6y = -21 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the [tex]\(x\)[/tex] terms: [tex]\( x^2 + 8x \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{8}{2})^2\)[/tex] which is [tex]\(16\)[/tex]:
[tex]\[ x^2 + 8x = (x + 4)^2 - 16 \][/tex]
3. Complete the square for the [tex]\(y\)[/tex] terms:
- Take the [tex]\(y\)[/tex] terms: [tex]\( y^2 - 6y \)[/tex]
- To complete the square, add and subtract [tex]\((\frac{-6}{2})^2\)[/tex] which is [tex]\(9\)[/tex]:
[tex]\[ y^2 - 6y = (y - 3)^2 - 9 \][/tex]
4. Substitute back into the equation:
Substitute the completed squares back into the equation:
[tex]\[ (x + 4)^2 - 16 + (y - 3)^2 - 9 = -21 \][/tex]
5. Simplify:
Combine like terms and move constants to the right side:
[tex]\[ (x + 4)^2 + (y - 3)^2 - 25 = -21 \][/tex]
[tex]\[ (x + 4)^2 + (y - 3)^2 = 4 \][/tex]
6. Identify the radius:
The equation [tex]\((x + 4)^2 + (y - 3)^2 = 4\)[/tex] is now in the standard form [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex]. Here, [tex]\( (h, k) = (-4, 3) \)[/tex] is the center, and [tex]\( r^2 = 4 \)[/tex]. The radius [tex]\( r \)[/tex] is the square root of 4:
[tex]\[ r = \sqrt{4} = 2 \][/tex]
Therefore, the radius of the circle is [tex]\( 2 \)[/tex] units.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.