Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the problem step by step.
We are given:
- The base diameter of the cylinder is [tex]\( x \)[/tex] units.
- The volume of the cylinder is [tex]\( \pi x^3 \)[/tex] cubic units.
From this information, we can derive certain properties of the cylinder.
### Step 1: Determine the radius of the cylinder.
The diameter [tex]\( d \)[/tex] of the cylinder is given as [tex]\( x \)[/tex] units.
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{x}{2} \][/tex]
### Step 2: Calculate the area of the cylinder's base.
The area [tex]\( A \)[/tex] of a circle (which forms the base of the cylinder) is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
Substituting [tex]\( r = \frac{x}{2} \)[/tex]:
[tex]\[ A = \pi \left(\frac{x}{2}\right)^2 = \pi \frac{x^2}{4} = \frac{1}{4} \pi x^2 \][/tex]
Therefore, the area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units, which confirms one of the given options.
### Step 3: Relate volume to height.
The volume [tex]\( V \)[/tex] of a cylinder is given by:
[tex]\[ V = \pi r^2 h \][/tex]
We know the volume [tex]\( V = \pi x^3 \)[/tex] and the radius [tex]\( r = \frac{x}{2} \)[/tex]. Substitute these into the volume formula:
[tex]\[ \pi x^3 = \pi \left(\frac{x}{2}\right)^2 h \][/tex]
[tex]\[ \pi x^3 = \pi \left(\frac{x^2}{4}\right) h \][/tex]
[tex]\[ \pi x^3 = \frac{\pi x^2}{4} h \][/tex]
Now, solve for [tex]\( h \)[/tex]:
[tex]\[ x^3 = \frac{x^2}{4} h \][/tex]
[tex]\[ 4 x^3 = x^2 h \][/tex]
[tex]\[ h = 4 x \][/tex]
So, the height of the cylinder is [tex]\( 4 x \)[/tex] units, confirming another given option.
### Conclusion:
Based on the analysis:
- The radius of the cylinder is [tex]\( \frac{x}{2} \)[/tex] units, not [tex]\( 2 x \)[/tex] units.
- The area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units. (True)
- The area of the cylinder's base is not [tex]\( \frac{1}{2} \pi x^2 \)[/tex] square units.
- The height of the cylinder is not [tex]\( 2 x \)[/tex] units.
- The height of the cylinder is [tex]\( 4 x \)[/tex] units. (True)
Therefore, the true statements are:
1. The area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units.
2. The height of the cylinder is [tex]\( 4 x \)[/tex] units.
We are given:
- The base diameter of the cylinder is [tex]\( x \)[/tex] units.
- The volume of the cylinder is [tex]\( \pi x^3 \)[/tex] cubic units.
From this information, we can derive certain properties of the cylinder.
### Step 1: Determine the radius of the cylinder.
The diameter [tex]\( d \)[/tex] of the cylinder is given as [tex]\( x \)[/tex] units.
The radius [tex]\( r \)[/tex] is half of the diameter:
[tex]\[ r = \frac{x}{2} \][/tex]
### Step 2: Calculate the area of the cylinder's base.
The area [tex]\( A \)[/tex] of a circle (which forms the base of the cylinder) is given by the formula:
[tex]\[ A = \pi r^2 \][/tex]
Substituting [tex]\( r = \frac{x}{2} \)[/tex]:
[tex]\[ A = \pi \left(\frac{x}{2}\right)^2 = \pi \frac{x^2}{4} = \frac{1}{4} \pi x^2 \][/tex]
Therefore, the area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units, which confirms one of the given options.
### Step 3: Relate volume to height.
The volume [tex]\( V \)[/tex] of a cylinder is given by:
[tex]\[ V = \pi r^2 h \][/tex]
We know the volume [tex]\( V = \pi x^3 \)[/tex] and the radius [tex]\( r = \frac{x}{2} \)[/tex]. Substitute these into the volume formula:
[tex]\[ \pi x^3 = \pi \left(\frac{x}{2}\right)^2 h \][/tex]
[tex]\[ \pi x^3 = \pi \left(\frac{x^2}{4}\right) h \][/tex]
[tex]\[ \pi x^3 = \frac{\pi x^2}{4} h \][/tex]
Now, solve for [tex]\( h \)[/tex]:
[tex]\[ x^3 = \frac{x^2}{4} h \][/tex]
[tex]\[ 4 x^3 = x^2 h \][/tex]
[tex]\[ h = 4 x \][/tex]
So, the height of the cylinder is [tex]\( 4 x \)[/tex] units, confirming another given option.
### Conclusion:
Based on the analysis:
- The radius of the cylinder is [tex]\( \frac{x}{2} \)[/tex] units, not [tex]\( 2 x \)[/tex] units.
- The area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units. (True)
- The area of the cylinder's base is not [tex]\( \frac{1}{2} \pi x^2 \)[/tex] square units.
- The height of the cylinder is not [tex]\( 2 x \)[/tex] units.
- The height of the cylinder is [tex]\( 4 x \)[/tex] units. (True)
Therefore, the true statements are:
1. The area of the cylinder's base is [tex]\( \frac{1}{4} \pi x^2 \)[/tex] square units.
2. The height of the cylinder is [tex]\( 4 x \)[/tex] units.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.